博碩士論文 91223054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.218.172.249
姓名 詹季儒(Ji-Ru Jame)  查詢紙本館藏   畢業系所 化學學系
論文名稱 大體積固相微萃取技術應用於被動式空氣採樣及動力學探討
(Large Volume Solid Phase Microextraction for passive air sampling)
相關論文
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 以逆吹式氣相層析法分析氣體成份
★ 氣相層析法應用於工業排放連續監測★ 煙道氣揮發性有機化合物連續監測方法開發
★ 自製新型除水及熱脫附濃縮裝置用於GC/MS線上分析揮發性有機汙染物★ 觸媒式非甲烷總碳氫分析儀開發與驗證
★ 自製除水器及熱脫附儀用於線上GC/MS/FID揮發性有機污染物之分析★ 大氣及水樣中揮發性有機氣體自動化分析技術之建立及應用
★ VOC前濃縮與預警系統之建構★ 建立自動化甲烷連續量測系統與其在指示大氣輻射冷卻之應用
★ 臭氧前趨物連續監測與臭氧生成之光化學探討★ 以近連續方式量測空氣中甲烷與異戊二烯及其生成之季節性探討
★ 自行架設光化學測站與商業化儀器平行比對及所得資料初步分析★ 近地表臭氧前驅物分析之前濃縮技術改良
★ 自動化噴霧捕捉分析系統之建立與研究★ 大體積固相微萃取水中揮發性有機污染物
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗利用增加靜相體積之概念,以提高分析物的萃取量,自行塗怖PDMS及PDMS/Carboxen高分子薄膜,其成分接近商業化固相微萃取(Solid phase microextraction)的吸附靜相,配合自行研發之進樣裝置,使熱脫附分析物不再侷限氣相層析儀(GC)之注射埠,大幅降低偵測極限。實驗過程中設計組裝一套熱脫附進樣系統,使用benzene、toluene、ethylbenzene、m-xylene、o-xylene (BTEX)純物質全量進樣作為校正曲線(calibration curves),驗證此系統可達良好線性範圍(R2>0.99)及再現性(1.07%)。
此外搭配自行設計頂空採樣裝置(headspace sampling device)分析濃度10 µg/L (ppb) BTEX樣品6次,其再現性4~12%。以及連續熱脫附方式,分析之同濃度BTEX,結果顯示分析物在PDMS及PDMS/Carboxen高分子薄膜脫附模式皆呈現指數下降曲線[Q/q0=exp(-aN)]符合典型之擴散行為,其PDMS及PDMS/Carboxen高分子薄膜感度對熱脫附次數存在良好的相關性(R2>0.99),並探討動力學常數a值對吸附及脫附效率之影響;且利用動力學常數,求得分析物在基質中的濃度及與靜相的分配常數,以及檢量未知空氣中BTEX的濃度。
近年來由於固相微萃取的材料特性與本身的構造設計,可以濃縮萃取揮發性物質,顯示了作為空氣採樣器的可能性,本實驗使用自製的PDMS及PDMS/Carboxen高分子薄膜作為被動式採樣器;以及頂空採樣裝置作為簡化空氣中變數,自製大體積PDMS及PDMS/Carboxen裝置無論對於標準樣品或真實空氣皆可達到良好的感度及解析度,尤其以PDMS/Carboxen對真實空氣效果更佳。
摘要(英) This research is based upon a simple SPME (solid phase micro-extraction) theory, in which the sensitivity of SPME is proportional to the volume of the polymer phase, assuming the volume of the polymer phase is negligible compared to that of an aqueous sample. A thick film of polydimethylsiloxane (PDMS) polymer was coated on a glass rod of 2 mm O.D. x 6.7 cm length to serve as a large volume solid phase extraction medium for increasing sensitivity.
A renovated thermal desorption device was retrofitted from a regular GC injector to accommodate the thick PDMS rod. To cope with peak broadening in chromatography, an in-line micro-sorbent trap packed was installed prior to the capillary column to focus volatile analytes slowly desorbed from the large volume PDMS rod, resulting in highly resolved peaks.
By placing various amounts of high purity benzene, toluene, ethylbenzene, m-xylene, o-xylene (BTEX) into the thermal desorption device the linearity and precision of the injection system were effectively validated with R2 > 0.99 and RSD < 1.07%, which lays a solid ground for the subsequent quantitative and kinetic studies.
Throughout the experiment a headspace device was designed to generate standard gas mixture by equilibrating headspace with a standard aqueous solution containing target compounds of BTEX. The large volume SPME was able to achieve repeatability of 4~12% for BTEX, sufficient for high quality quantitative analysis.
Thermal desorption of the PDMS or PDMS/Carboxen rod showed a rapid exponential decline with the residue which can be described by the first order kinetics [Q/q0=exp(-aN)] and conformed to the diffusion theory. Herein, the kinetic constant can be described as the efficiency of sorption and desorption and has been shown to be temperature dependent but independent of extraction time and sample concentration. The simplified kinetics allows rate constants to be easily determined by arbitrarily loading and successive desorption of the target compounds at arbitrary extraction time. Using rate constants and equilibrium constants the concentrations of volatile analytes in both air and water can be easily calculated avoiding conventional time-consuming calibration procedures.
Both water and air samples were tested by the large volume SPME to show the sensitivity due to volume merit and the overall applicability of this self-developed technique.
關鍵字(中) ★ 被動式採樣
★ 大體積固相微萃取
★ 脫附
★ 聚二甲基矽氧烷
★ 動力學常數
關鍵字(英) ★ kinetic constant
★ polydimethylsiloxane (PDMS)
★ large volume solid phase microextraction
★ diffusion
論文目次 中文摘要 I
英文摘要 III
目錄 V
圖目錄 VIII
表目錄 XI
第一章 前言 1
1-1 空氣中污染物採樣方法 1
1-2 固相微萃取 8
1-3 固相微萃取應用於被動式空氣採樣 14
1-4 研究目的 20
第二章 大體積固相微萃取理論 24
2-1 平衡狀態下萃取 24
2-2 非平衡狀態下萃取 26
2-2.1 吸附 26
2-2.2 脫附 35
2-2.3 脫附vs. 吸附 41
2-3 分析物在基質中濃度(C0) 43
2-3.1分配常數(Kfs)求法 43
2-3.2平衡狀態下求得基質中的濃度 48
2-3.3非平衡狀態下求得基質中的濃度 49
第三章 實驗設計 51
3-1 高分子薄膜塗佈 51
3-2 進樣前濃縮裝置 53
3-2.1樣品熱脫附槽 53
3-2.2系統之進樣濃縮裝置 55
3-3 頂空採樣裝置 58
3-4 全量進樣 60
3-5 標準溶液製備 62
第四章 結果與討論 63
第一節 動力學探討 63
4-1 全量進樣驗證線性與再現性 63
4-2 吸附特性探討 68
4-3 全量進樣與吸附特性比較 76
4-4 脫附特性探討 78
4-5 動力學常數a值的探討 89
4-5.1 動力學常數a值的求法 89
4-5.2 影響動力學常數a值之因子 92
4-5.3 溫度影響動力學常數a值 96
第二節 大體積固相微萃取應用於被動式空氣採樣 99
4-1利用標準品比對定性 99
4-2 真實空氣 100
4-3 推算分析物在基質中的濃度 106
第五章 總結 109
參考文獻 110
參考文獻 Radian Corp. Control techniques for volatile organic emissions from stationary source. USEPA, EPA-450/2-78-022, 1978.
Susanne V. H. Air sampling instruments for evaluation of atmospheric contaminants. 8th, Ohio, 1989.
沈健智等,1996,主動式與被動式採樣分析VOCs化合物之研究,清華大學原子科學碩士論文。
工業技術研究院,工業技術安全發展中心,物質安全資料表。
Hawthone, S.; Miller, D.; Arthur, C.; Pawliszyn, J. J. Chromatogr. 1992, 603, 185-191.
Wasowicz, E.; Kaminski, E.; Jelen, H.; Wlazly, K. J. Agric. Food Chem. 1998, 46, 1469-1473.
Singer, K.; Wenz, B.; Seefeld, V.; Seeper, U. German Lab-Med. 1995, 18, 112-118
Page, B.D.; Lacroix, G. J. Chromatogr. 1993, 648, 199-211.
Choudhury, T.; Gerhardt, K.; Mawhinney, T. Environ. Sci. Technol. 1996, 30, 3259-3265.
Muller, L.; Gorecki, T.; Pawliszyn, J. Anal. Chem. 1999, 64, 610-616
Koziel, J.; Jia, M.; Khaled, A. Trends in Anal. Chem. 1999, 400, 153-162.
Bao, M.; Pantani, F.; Griffini, O. J. Chromatogr., A 1998, 809, 75-87.
Arthur, C.; Pratt, K.; Belardi, R.; Motagh, S.; Pawliszyn, J. J. High Res. Chromatogr. 1992, 15, 741-744.
Migdic, C.; Pawliszyn, J. J.Chromatogr., A 1996, 723, 111-112.
Yang, Y.; Miller, D.J.; Hawthorne, S.B. J. Chromatogr., A 1998, 800, 1866.
Maria, L.; Ken, L.; Merv, F. Anal. Chem., 1998, 70, 2510-2515.
Chen, J.; Pawliszyn, J. Anal. Chem. 1995, 67, 2530-2563.
Daimon, H.; Pawliszyn, J. Anal. Chem. 1996, 33, 421-424.
Langenfeld, J.; Hawthorne, S.; Miller, D. J. Chromatogr., A 1996, 740, 139-145.
Pawliszyn, J. Applications of Solid Phase Microextraction. Royal Society of Chemistry: Cornwall, U.K., 1999.
Pawliszyn, J. Solid Phase Microextraction: Theory and Practice. Wiley-VCH: New York, 1997.
Arthur, C. L.; Pawliszyn, J. Anal. Chem. 1990, 62, 2145-2148.
Buchholz, K.D.; Pawliszyn, J., Anal.Chem. 1994, 66, 160-167.
Prosen, H.; Zupancic-Kraij, L., Trends in Anal. Chem. 1999, 18, 272-282.
Gang, S.; Hian K. L. J. Anal. Chem. 2003, 75, 98-103.
Fustinoni, S.; Giampiccolo, R.; Pulvirenti, S.; Buratti, M.; Colombi, A. Journal of Chromatogr., B 1999, 723, 105-115.
Koziel, J. A.; Novak, I. Trends in Anal. Chem. 2002, 21, 840-850.
Meng, C.; Janusz, P. Environ. Sci. Technol. 1995, 29, 693-701.
Koziel, J.; Jia, M.; Pawliszyn, J. Anal. Chem. 2000, 72, 5178-5186
Martos, P. A.; Pawliszyn, J.; Anal. Chem. 1999, 71, 1513-1520.
Hook, G. L.; Kimm, G. L.; Hall, T.; Smith, P. A. Trends in Anal. Chem. 2002, 21, 534-543.
Koziel, J.A.; Noah, J.; Pawliszyn, J. Environ. Sci. Technol. 2001, 35, 1481-1486.
Martos, P. A.; Pawliszyn, J. Anal. Chem. 1998, 70, 2311-2320.
Grote, C.; Pawliszyn, J.; Anal. Chem. 1997, 69, 587-596.
Chen, Y.; Pawliszyn, J. Anal. Chem. 2003, 75, 2004-2010.
Xiong, G,; Koziel, J. A.; Pawliszyn, J. J. Chromatogr., A 2004, 1025, 57–62
Xia, X.; Leidy, R.B. Anal. Chem. 2001, 73, 2041-2047.
Khaled, A.; Pawliszyn, J. J. Chromatogr., A 2000, 892, 455-467.
Elke, K.; Jermann, E.; Begerow, J.; Dunemann, L. J. Chromatogr., A 1998, 826, 191-200.
Koziel, J.A.; Khaled, A.; Noah, J.; Pawliszyn, J. Anal. Chim. Acta 1999, 400, 153-162.
Koziel, J.A.; Pawliszyn, J. J. Air Waste Manag. Assoc., 2001, 51, 173-184.
Harper, M. J. Chromatogr., A 2000, 885, 129-151.
Benijts, T.; Vercammen, J.; Dams, R.; Tuan, H.P.; Lambert, W.; Sanddra, P. J. Chromatogr., B 2000, 755, 137-142.
Ai, J. Anal. Chem.1997, 69, 1230-1236.
Ai, J. Anal. Chem. 1997, 69, 3260-3266.
Ai, J. Anal. Chem. 1998, 70, 4822-4826.
Oomen, A. G.; Mayer, P.; Tolls, J.; Anal. Chem. 2000, 72, 2802-2808.
Bartelt, R. J.; Zilkowski, B. W. Anal. Chem. 1999, 71, 92-101.
陳元曼,2003,大體積固相微萃取水中揮發性有機污染物,
中央大學化學所碩士論文。
Chen, Y.; Pawliszyn, J. Anal. Chem. 2004, in press.
Zhang, Z.; Pawliszyn, J. J. Phys. Chem. 1996, 100, 17648-17654.
Kamil, K.; Miroslav, C.; Jirí, M. J. Chromatogr., A 2004, 1029, 263–266.
陳韋立,2000,大氣及水樣中揮發性有機氣體自動化分析技術之建立與應用, 中央大學碩士論文。
Elke, K.; Jermann, E.; Begerow, J.; Dunemann, L. Journal of Chromatogr., A 1998, 826, 191-200.
Gorecki, T.; Yu, X.; Pawliszyn, J. Analyst, 1999, 124, 643-649.
Alpendurada, M. J. Chromatogr., A 2000, 889, 3-14.
57 Chen, Y.; Koziel, J. A.; Pawliszyn, J. Anal. Chem. 2003, 75, 6485-6493.
58 Lestremau, F.; Andersson, F.A.; Desauziers, V.; Fanlo, J.L. Anal. Chem. 2003, 75, 2626-2632.
59 Koziel, J.A.; Odziemkowski, M.; Pawliszyn, J. Anal. Chem. 2001, 73, 47-54.
60 美國EPA網站
http://www.epa.gov/athens/learn2model/part-two/onsite/esthenry.htm
指導教授 王家麟(Jia-Lin Wang) 審核日期 2004-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明