博碩士論文 91224003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.91.106.223
姓名 潘冠廷(Kuan-Ting Pan)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 人類細胞株生產含多種亞型的 干擾素-a之蛋白質體學研究
(Proteomics study of purified interferon-a mixture produced from human lymphoblastoid cell line )
相關論文
★ 陰離子界面活性劑sodium dodecylbenzene sulfonate分解菌篩選與脫磺酸酵素研究★ 鄰苯二酚加氧酵素的熱穩定性提昇研究
★ Triton X-100 分解菌之分離和分解酵素之特性研究★ Triton X-100加氧酵素之純化與定性
★ Lactobacillus reuteri於酸性與膽鹽環境中之蛋白質體研究★ 蕃茄根部受銅逆境之基因調控
★ Pseudomonas nitroreducens TX1 異化辛基苯酚聚氧乙基醇之功能性蛋白質體學:以二維電泳法分析等電點4-8之蛋白質表現★ Pseudomonas nitroreducens TX1之具耗氧活性之麩胺酸合成酶之單離
★ 辛基苯酚之分解:分解菌和生物復育之菌相研究★ 分解辛基苯酚聚氧乙基醇之耗氧酵素(二氫硫辛醯胺脫氫酶)的純化與定性
★ AtNPR1轉殖番茄之性狀分析及抗病機制研究★ Pseudomonas putida TX2分解辛基苯酚聚氧乙基醇及其具雌激素活性代謝物之研究
★ 以功能性蛋白質體學研究Pseudomonas nitroreducens TX1生長於辛基苯酚聚氧乙基醇之代謝與逆境反應★ 以功能性蛋白質體學研究Pseudomonas putida TX2生長於 辛基苯酚聚氧乙基醇與辛基苯酚之代謝與逆境反應
★ 以功能性基因體學研究細菌異化辛基苯酚 聚氧乙基醇及抗逆境之基因★ Pseudomonas nitroreducens TX1中二氫硫辛醯胺脫氫酶分解辛基苯酚聚氧乙基醇之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 干擾素屬於細胞激素的成員之一,具重要免疫調節性功能,會因病毒感染細胞而被誘發生成,並抑制人體內病毒的複製,是抵抗多種病毒感染的第一道防線。此外,干擾素還擁有如抑制細胞生長、以及廣泛的免疫調節等多種作用。由於以上特性,干擾素在醫療上已成功地用作多種病毒感染或是癌症的治療,其中包含B型肝炎與C型肝炎、白血病,淋巴瘤等疾病皆具有療效。然而,這些產品大部分是利用基因工程由大腸桿菌或中國倉鼠卵巢細胞所生產之重組的干擾素。重組干擾素的缺點在於大腸桿菌不具醣化機制,而中國倉鼠卵巢細胞的醣化和人類細胞不同,這樣的產品半衰期短、藥效低,且幾乎百分之百會引發副作用。因此,以人體自然生產的干擾素用作臨床治療一直是多年以來藥物開發的重要課題。
人類干擾素-?是由13個胺基酸序列相同度約在78-95%的蛋白質所組成(即有13種亞型),其中只有?-2與?-14為醣蛋白,其他則無醣化結構。不同的亞型具有不同強度的抗病毒、抗細胞生長以及其他生物活性。在亞型組成比例上與人體自然生產之干擾素-?相似的產品,具有較高的藥效與較低的自體免疫反應。然而直到現在,干擾素-?在製備時的低濃度及其亞型組成的複雜度仍阻礙了天然干擾素-?藥物的發展。本研究則採用建教合作計畫所專利之人類淋巴纖維母細胞株,其可以生物反應器培養。本研究乃利用蛋白質體學之方法,建立分析模式,藉此分析溶液中濃度低(?g/ml),而又包含一群胺基酸序列極為相似的蛋白質。由賽德醫藥科技公司利用管柱層析所得之干擾素-?多種亞型混合物,經反相高效能液相層析儀分析,分成13-15個主要的波峰,而以硫酸十二酯鈉聚丙烯醯胺凝膠電泳分析其分子量分佈在19-24 kD之間,且分子量大於20 kD的部份應屬醣化之亞型粗估佔50-80%。而每一反相高效能液相層析之波峰透過聚丙烯醯胺凝膠電泳與醣結構偵測染劑進行分析,判斷其醣化亞型主要分佈在反相高效能液相層析中比重組干擾素-?2a滯留時間較早的波峰內,且佔全部波峰面積之57-60%。由切醣酵素分析顯示,該純化干擾素-?偵測不到N-linked的亞型,即無干擾素-?14之存在,且質譜分析中亦無此亞型。此外,經由電灑法四極棒飛行時間串聯式質譜儀的胺基酸序列分析,經各干擾素-?亞型經胰蛋白酶水解後之代表胜肽序列比對,確認有五種亞型存在(?1(13)、?2、?5、?8、?21),並有多種亞型尚未確認(?4/10/14/17、?4/7/16/17/21) ,故純化干擾素-?中含有至少6種最多11種不同亞型。在質譜分析的前處理方面,胰蛋白酶水解條件的最適化過程中,發現還原反應的溫度由37?C提高至56?C時,鑑定亞型時的胺基酸序列覆蓋度由平均10%提高至平均47%,而若在還原反應前以95?C水浴5分鐘,更可達58-66%的序列覆蓋度。本研究提供一有效且敏感之方法探討自然生產之干擾素-?中的亞型,將可有效幫助天然之混合性蛋白質藥物的發展。
摘要(英) Interferon (IFN) with important immunomodulatory function. is one of the members of cytokines They are produced in response to viruses and they inhibit virus replication. Besides antiviral activities, they also show antiproliferative and immunomodulatory activities. The pleiotropic properties of IFNs have been successfully exploited in therapeutic application in several types of cancer and viral infection diseases, including leukemia, lymphoma, hepatitis B, hepatitis C…etc. However, most of the products currently on the market are recombinant IFNs expressed from Escherichia coli (E. coli) or Chinese Hamster Ovary (CHO) cell. Due to the absent or different glycosylation of such recombinant proteins, they exhibit certain shortage, including shorter half-life, less potency and almost 100% side effect. The need of natural human IFNs for clinical use is on the rise in the last several years.
The human interferon-a (IFN-a) family is comprised of 13 homologous subtypes with 78-95% identity at amino acid sequence level. Only IFN-?2 and IFN-?14 are glycosylated subtypes. Previous studies have demonstrated that each of the IFN-? subtypes showed quantitatively distinct patterns in the antiviral, growth inhibitory, and other biologic activities. And IFN-a with natural structural conformation and similar composition of subtypes has higher efficacy and is less immunogenic. Until now, the minute quantities and the complexity of subtypes composition of native IFN-a produced from human cells still hindered the development of naturally derived products. In this study, the patented human lymphoblastoid cell line was cultured in bioreactor. Our goal is to establish an analytic methodology by proteomics approach to analyze a group of proteins at low concentration (?g/ml) with high identity in amino acid sequence. The purified IFN-a by a 3-step column chromatography was prepared by CytoPharm Inc. Taiwan. The IFN-? mixture was further separated into 11-15 major peaks by reversed-phase high performance liquid chromatography. The molecular weight of this preparation is 19-24 kD with 50-80% higher than 20 kD, which indicating the glycosylated subtypes. From the analysis of SDS-PAGE and stained by glyco-staining, the glycosylated subtypes were located in the peaks with earlier retention time than recombinant IFN-?2a when separated by RP-HPLC and contained 57-60% of total peak area. And there are no detectable N-linked subtypes from the deglycosylation analysis indicating there were no IFN-?14 in purified IFN-? that also confirmed by MS/MS analysis. Based on the peptide sequences analysis by electrospray quadrupole-time-of-flight tandem mass spectrometry, confirmed the present of 5 subtypes (?1(13)、?2、?5、?8、?21) and several subtypes (?4/10/14/17、?4/7/16/17/21) were not completely identified. Therefore, there were at least 6 and most 11 subtypes in purified IFN-?. For the sample pretreatment for MS analysis, changing the temperature of reduction from 37?C to 56?C raised the peptide coverage from 10% to 47% when analyzed by tandem mass spectrometry. And 58-66% amino acid sequence coverage for the identified subtypes was obtained when cooking the sample for 5 minutes before reduction. Our study provides an effective and sensitive approach to characterize the subtype composition of an IFN mixture that may efficiently accelerate the development of natural IFN drug.
關鍵字(中) ★ 蛋白質體學
★ 干擾素
關鍵字(英) ★ interferon
★ proteomics
論文目次 摘要………………………………………………………………............ I
英文摘要……………………………………………………….………... III
目錄…………………………………………………………….…….….. V
表目錄………………………………………………………….………... VII
圖目錄………………………………………………………….…….….. VIII
縮寫對照表…………………..………………………………………..… IX
壹、緒論……………………..…………………………….……………. 1
一、干擾素簡介…………………………………………….…………. 1
二、干擾素的命名與分類…………………………………………….. 2
三、干擾素的訊號傳遞……………………………………………….. 4
四、人類干擾素-α之結構與生化性質……………………………..… 5
五、干擾素-α的醫療應用…………………………………………..… 7
六、計畫背景與研究大綱………………………….…………………. 9
貳、材料與方法………………………………………………………… 12
一、純化干擾素…………………………………………..…………… 12
二、硫酸十二酯鈉聚丙烯醯胺凝膠電泳之分子量分析..…………… 12
三、反相高效能液相層析之圖譜分析………………………..……… 17
四、串聯式質譜儀分析………………………………………..……… 18
五、干擾素-α各亞型胺基酸序列分析………………………..……… 22
參、結果……………………………….………………………………... 24
一、人類干擾素-α之生物資訊學研究……….………………………. 24
二、分析方法建立與條件最適化……………………………….……. 25
三、純化干擾素-α之分子量分佈圖譜…………………..…………… 28
四、純化干擾素-α之反相高效能液相層析分析………..…...………. 28
五、純化干擾素-α之去醣處理…………………………..…………… 30
六、純化干擾素-α之串聯式質譜與胺基酸序列分析…..…………… 30
肆、討論………………………………………………………………… 32
一、分析方法建立與最適化………………………………….………. 32
二、干擾素-α各亞型之胺基酸序列分析……………………..………. 33
三、純化干擾素-α之亞型圖譜分析與鑑定………………...………... 34
VI
伍、結論與建議………………………………………………………… 38
一、干擾素-α之生物資訊學研究……………………………..……… 38
二、純化干擾素-α多種亞型混合物之圖譜分析……………..……… 38
三、純化干擾素-α多種亞型混合物之亞型鑑定……………..……… 39
四、建議………………………………………………………………... 39
陸、參考文獻……………………………………………………………. 41
表………………………………………………………………….……... 50
圖………………………………………………………………….……... 60
附錄一、人類干擾素-α各亞型於Swiss-Prot 資料庫之代碼…………. 88
參考文獻 Bach, E. A., M. Aguet, and R. D. Schreiber 1997. The IFN gamma receptor: a paradigm for cytokine receptor signaling. Annu. Rev. Immunol. 15:563-591.
Berggren, K., E. Chernokalskaya, T. H. Steinberg, C. Kemper, M. F. Lopez, Z. Diwu, R. P. Haugland, and W. F. Patton 2000. Background-free, high sensitivity staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gels using a luminescent ruthenium complex. Electrophoresis 21:2509-2521.
Berman, H. M., J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne 2000. The Protein Data Bank. Nucleic Acids Res. 28:235-242.
Billiau, A. 1996. Interferon-gamma: biology and role in pathogenesis. Adv. Immunol. 62:61-130.
Blum, H., H. Beier, and H. J. Gross 1987. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8: 93-99.
Borden, E., and B. Williams 2000. Interferons, In R. Bast, D. Kufe, R. Pollock, R. Weichselbaum, J. Holland, and E. Frei (ed.), Cancer Medicine 5th ed. Hamilton, Canada.
Cantell, K., and J. Pirhonen 1996. IFN-gamma enhances production of IFN-alpha in human macrophages but not in monocytes. J. Interferon Cytokine Res. 16:461-463.
Castelruiz, Y., E. Larrea, P. Boya, M. P. Civeira, and J. Prieto 1999. Interferon alfa subtypes and levels of type I interferons in the liver and peripheral mononuclear cells in patients with chronic hepatitis C and controls. Hepatology 29:1900-1904.
Cinatl, J., B. Morgenstern, G. Bauer, P. Chandra, H. Rabenau, and H. W. Doerr 2003. Treatment of SARS with human interferons. Lancet. 362:293-294.
Darnell, J. E. Jr., I. M. Kerr, and G. R. Stark 1994. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415-1421.
DeMaeyer, E., and J. DeMaeyer-Guignard 1988. Interferons and Other Regulatory Cytokines. John Wiley, New York.
Dipaola, M., T. Smith, K. Ferencz-Biro, M. J. Liao, and D. Testa 1994. Interferon-alpha 2 produced by normal human leukocytes is predominantly interferon-alpha 2b. J. Interferon Res. 14:325-332.
Enserink, M. 2004. SARS treatment. Interferon shows promise in monkeys. Science 303:1273-1275.
Fish, E. N. 1992. Definition of receptor binding domains in interferon-alpha. J. Interferon Res. 12:257-266.
Fish, E. N., K. Banerjee, and N. Stebbing 1983. Human leukocyte interferon subtypes have different antiproliferative and antiviral activities on human cells. Biochem. Biophys. Res. Commun. 112:537-546.
Foster, G. R., O. Rodrigues, F. Ghouze, E. Schulte-Frohlinde, D. Testa, M. J. Liao, G. R. Stark, L. Leadbeater, and H. C. Thomas 1996. Different relative activities of human cell-derived interferon-alpha subtypes: IFN-alpha 8 has very high antiviral potency. J. Interferon Cytokine Res. 16:1027-1033.
Gevaert, K., and J. Vandekerckhove 2000. Protein identification methods in proteomics. Electrophoresis 21:1145-1154.
Goren, T., D. G. Fischer, and M. Rubinstein 1986. Human monocytes and lymphocytes produce different mixtures of alpha-interferon subtypes. J. Interferon Res. 6:323-329.
Haagmans, B. L., T. Kuiken, B. E. Martina, R. A. Fouchier, G. F. Rimmelzwaan, G. van Amerongen, D. van Riel, T. de Jong, S. Itamura, K. H. Chan, M. Tashiro, and A. D. Osterhaus 2004. Pegylated interferon-alpha protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nat. Med. 10:290-293.
Hensley, L. E., L. E. Fritz, P. B. Jahrling, C. L. Karp, J. W. Huggins, and T. W. Geisbert 2004. Interferon-beta 1a and SARS coronavirus replication. Emerg. Infect. Dis. 10:317-319.
Herring, S. W., and R. K. Enns 1983. Rapid purification of leukocyte interferons by high-performance liquid chromatography. J. Chromatogr. 266:249-256.
Hilkens, C. M., J. F. Schlaak, and I. M. Kerr 2003. Differential responses to IFN-alpha subtypes in human T cells and dendritic cells. J Immunol. 171:5255-5263.
Huang, S. L., K. T. Pan, H. Y. Liu, and Y. C. Kuo 2004. Purification, identification and characterization of human interferon-? subtypes from human lymphoblastoid cell line. 3rd International Proteomics Conference. Taipei, Taiwan.
Ikai, A. 1980. Thermostability and aliphatic index of globular proteins.
J. Biochem. 88:1895-1898.
Isaacs, A., and J. Lindenmann 1957. Virus interference. I. The interferon. Proc. R. Soc. Ser. B. 147:258-267.
Juang, Y., W. Lowther, M. Kellum, W. C. Au, R. Lin, J. Hiscott, and P. M. Pitha 1998. Primary activation of interferon A and interferon B gene transcription by interferon regulatory factor 3. Proc. Natl. Acad. Sci. USA 95:9837-9842.
Klaus, W., B. Gsell, A. M. Labhardt, B. Wipf, and H. Senn 1997. The three-dimensional high resolution structure of human interferon alpha-2a determined by heteronuclear NMR spectroscopy in solution. J Mol Biol. 274:661-675.
Knight, E., and D. Fahey 1981. Human fibroblast interferon. An improved purification. J. Biol. Chem. 256:3609-3611.
Kontsek, P. 1994. Human type I interferons: structure and function. Acta. Virologica. 38:345-360.
Kontsek, P., and E. Kontseková 1997. Forty years of interferon. Acta. Virologica. 41:349-353.
Kontsek, P., G. Karayianni-Vascomcelos, and E. Kontseková 2003. The human interferon systems: Characterization and classification after discover of novel members. Acta. Virologica. 47:201-215.
Korn, A. P., D. R. Rose, and E. N. Fish 1994. Three-dimensional model of a human interferon-? consensus sequence. J. Interferon Res. 14:1-9.
Kotenko, S. V., G. Gallagher, V. V. Baurin, A. Lewis-Antes, M. Shen, N. K. Shah, J. A. Langer, F. Sheikh, H. Dickensheets, R. P. Donnelly 2003. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat. Immunol. 4:69-77.
Kyte, J., and R. F. Doolittle 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157:105-132.
LaFleur, D. W., B. Nardelli, T. Tsareva, D. Mather, P. Feng, M. Semenuk, K. Taylor, M. Buergin, D. Chinchilla, V. Roshke, G. Chen, S. M. Ruben, P. M. Pitha, T. A. Coleman, and P. A. Moore 2001. Interferon-kappa, a novel type I interferon expressed in human keratinocytes. J. Biol. Chem. 276:39765-39771.
Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227:680-685.
Lefévre, F., and V. Boulay 1993. A novel and atypical type one interferon gene expressed by trophoblast during early pregnancy. J. Biol. Chem. 268:19760-19768.
Loutfy, M. R., L. M. Blatt, K. A. Siminovitch, S. Ward, B. Wolff, H. Lho, D. H. Pham, H. Deif, E. A. LaMere, M. Chang, K. C. Kain, G. A. Farcas, P. Ferguson, M. Latchford, G. Levy, J. W. Dennis, E. K. Lai, and E. N. Fish 2003. Interferon alfacon-1 plus corticosteroids in severe acute respiratory syndrome: a preliminary study. JAMA. 290:3222-3228.
Marie, I., J. E. Durbin, and D. E. Levy 1998. Differential viral induction of distinct interferon-alpha genes by positive feedback through interferon regulatory factor-7. EMBO J. 17:6660-6669.
Martal, J., M. C. Lacroix, C. Loudes, M. Saunier, and S. Wintenberger-Torres 1979. Trophoblastin, an antiluteolytic protein present in early pregnancy in sheep. J. Reprod. Fertil. 56:63-73.
Mortz, E., T. N. Krogh, H. Vorum, and A. Gorg 2001. Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionization-time of flight analysis. Proteomics 1:1359-1363.
Nagano, Y., and Y. Kojima 1954. Pouvoir immunisant du virus vaccinal inactive par des rayons ultraviolets. C. R. Soc. Biol. 48:1700-1702.
Nyman, T. A., H. Tölö, J. Parkkinen, and N. Kalkkinen.1998. Identification of nine interferon-α subtypes produced by Sendai virusinduced human peripheral blood leucocytes. Biochem. J. 329:295-302. (a)
Nyman, T. A., N. Kalkkinen, H. Tölö, and J. Helln. 1998. Structural characterisation of N-linked and O-linked oligosaccharides derived from interferon-?2b and interferon-?14c produced by Sendai-virus-induced human peripheral blood leukocytes. Eur. J. Biochem. 253:485-493. (b)
O'Connell, K. L., and J. T. Stults 1997. Identification of mouse liver proteins on two-dimensional electrophoresis gels by matrix-assisted laser desorption/ionization mass spectrometry of in situ enzymatic digests. Electrophoresis 18:349-359.
Ortaldo, J. R., R. B. Herberman, C. Harvey, P. Osheroff, Y. C. Pan, B. Kelder, and S. Pestka 1984. A species of human alpha interferon that lacks the ability to boost human natural killer activity. Proc. Natl. Acad. Sci. USA 81:4926-4929.
Park, Z. Y. and D. H. Russell 2000. Thermal denaturation: a useful technique in peptide mass mapping. Anal. Chem. 72:2667-2670.
Park, Z. Y. and D. H. Russell 2001. Identification of individual proteins in complex protein mixtures by high-resolution, high-mass-accuracy MALDI TOF-mass spectrometry analysis of in-solution thermal denaturation/enzymatic digestion. Anal. Chem. 73:2558-2564.
Pestka, S., J. A. Langer, K. C. Zoon, and C. E. Samuel 1987. Interferons and their actions. Annu. Rev. Biochem. 56: 727-777.
Radhakrishnan, R., L. J. Walter, A. Hruza, P. Reichert, P. P. Trotta, T. L. Nagabhushan, and M. R. Walter 1996. Zinc mediated dimer of human interferon-alpha 2b revealed by X-ray crystallography. Structure 4:1543-1563.
Runkel, L., W. Meier, R. B. Pepinsky, M. Karpusas, A. Whitty, K. Kimball, M. Brickelmaier, C. Muldowney, W. Jones, and S. E. Goelz 1998. Structural and functional differences between glycosylated and non-glycosylated forms of human interferon-beta (IFN-beta). Pharm. Res. 15:641-649.
Samuel, C. E. 2001. Antiviral actions of interferons. Clinical Microbiology Reviews 14(4)778-809.
Sen, G. C. 2001. Viruses and interferons. Annu. Rev. Microbiol. 55:255-281.
Senda, T., S. Saitoh, and Y. Mitsui 1995. Refined crystal structure of recombinant murine interferon-beta at 2.15A˚ resolution. J. Mol. Biol. 253:187-207.
Sheppard, P., W. Kindsvogel, W. Xu, K. Henderson, S. Schlutsmeyer, T. E. Whitmore, R. Kuestner, U. Garrigues, C. Birks, J. Roraback, C. Ostrander, D. Dong, J. Shin, S. Presnell, B. Fox, B. Haldeman, E. Cooper, D. Taft, T. Gilbert, F. J. Grant, M. Tackett, W. Krivan, G. McKnight, C. Clegg, D. Foster, and K. M. Klucher 2003. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat. Immunol. 4:63-68.
Shevchenko, A., M. Wilm, O. Vorm, and M. Mann 1996. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal. Chem. 68:850-858.
Shirono, H., C. Ito, and J. Koga 1990. Studies on subtype composition in natural leukocyte interferon preparations. J. Virol. Methods. 27:1-10.
Soos, J. M., and B. E. Szente 2003. Type I interferons, pp. 549. In A. W. Thomson and M. T. Lotze (ed.), The Cytokine Handbook 4th ed. Elsevier Science Ltd., UK.
Stark, G. R., I. M. Kerr, B. Williams, R. Silverman, and R. Schreiber 1998. How cells respond to interferons. Annu. Rev. Biochem. 67:227-64.
Steinberg, T. H., K. Pretty On Top, K. N. Berggren, C. Kemper, L. Jones, Z. Diwu, R. P. Haugland, and W. F. Patton 2001. Rapid and simple single nanogram detection of glycoproteins in polyacrylamide gels and on electroblots. Proteomics 1:841-855.
Stroher, U., A. DiCaro, Y. Li, J. E. Strong, F. Aoki, F. Plummer, S. M. Jones, and H. Feldmann 2004. Severe acute respiratory syndrome-related coronavirus is inhibited by interferon- alpha. J. Infect. Dis. 189:1164-1167.
Sumner, L. W., B. Wolf-Sumner, S. P. White, and V. S. Asirvatham 2002. Silver stain removal using H2O2 for enhanced peptide mass mapping by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 16:160168.
Tan. Y. H., F. Barakat, W. Berthold, H. Smith-Johannsen, and C. Tan 1979. The isolation and amino acid/sugar composition of human fibroblastoid interferon. J. Biol. Chem. 254:8067-8073.
Tölö, H., H. L. Kauppinen, G. Alm, A. Perers, E. Lindeberg, V. Wahlstedt-Froberg, and J. Parkkinen 2001. Development of a highly purified multicomponent leukocyte IFN-alpha product. J. Interferon Cytokine Res. 21:913-920.
Utsumi, J., E. Matsuo-Ogawa, T. Nagahata, K. Kasama, Y. Kagawa, and Y. Satoh 1995. Carbohydrate-dependent biological activities of glycosylated human interferon-beta on human hepatoblastoma cells in vitro. Microbiol. Immunol. 39:81-86.
Utsumi, J., S. Yamazaki, K. Hosoi, H. Shimizu, K. Kawaguchi, and F. Inagaki 1986. Conformations of fibroblast and E. coli-derived recombinant human interferon-beta s as studied by nuclear magnetic resonance and circular dichroism. J. Biochem. 99:1533-1535.
Yan, J. X. , R. Wait, T. Berkelman, R. A. Harry, J. A. Westbrook, C. H. Wheeler, and M. J. Dunn 2000. A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 21:3666-3672.
Yanai, Y., O. Sanou, T. Kayano, H. Ariyasu, K. Yamamoto, H. Yamauchi, H. Ikegami, and M. Kurimoto 2001. Analysis of the antiviral activities of natural IFN-alpha preparations and their subtype compositions. J. Interferon Cytokine Res. 21:835-841.
Yonehara, S., Y. Yanase, T. Sano, M. Imai, S. Nakasawa, and H. Mori 1981. Purification of human lymphoblastoid interferon by a simple procedure with high yields. J. Biol. Chem. 256:3770-3775.
Young, H. A. 1996. Regulation of interferon-gamma gene expression. J. Interferon Cytokine Res. 16:563-568.
Zavyalov, V. P., A. I. Denesyuk, and G. A. Zavyalov 1989. Theoretical analysis of conformation and active sites of interferons. Immunol. Lett. 22:173-182.
Zoon, K. C., D. Miller, J. Bekisz, D. zur Nedden, J. C. Enterline, N. Y. Nguyen, and R. Q. Hu 1992. Purification and characterization of multiple components of human lymphoblastoid interferon-alpha. J. Biol. Chem. 267:15210-15216.
Zoon, K. C., M. E. Smith, P. J. Bridgen, D. Nedden, and C. B. Anfinsen 1979. Purification and partial characterization of human lymphoblast interferon Proc. Natl. Acad. Sci. USA 76:5601-5605.
指導教授 黃雪莉(Shir-Ly Huang) 審核日期 2004-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明