博碩士論文 91224007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.237.94.109
姓名 陳念谷(Nian-Ku Chen)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 酵母菌ALA1基因的表現調控機制
(The expression and regulation of the yeast gene,ALA1.)
相關論文
★ Kineosphaera limosa 菌株中 phaC 基因之序列分析★ 剪力和組織蛋白去乙醯酶在動靜脈廔管失效扮演的角色
★ Classification of powdery mildews on ornamental plants in northern Taiwan★ 探討Alanyl-tRNA synthetase的演化及專一性
★ 酵母菌valyl-tRNA synthetase附加區段的 生物功能之探討★ 探討酵母菌glycyl-tRNA合成酵素的非傳統生物功能
★ 探討酵母菌Valyl-tRNA synthetase的生化活性★ 酵母菌轉譯起始機制的研究
★ 酵母菌GRS1基因的轉譯起始機制之研究★ 探討酵母菌ALA1基因的non-AUG轉譯機制
★ 酵母菌 alanyl-tRNA synthetase 的細胞內傳輸機制★ 鑑定酵母菌中具高親和力的tRNA結合蛋白
★ 酵母菌ALA1 基因轉譯起始機制的研究★ 探討一個真核tRNA合成酶的附加區段之轉錄活化活性
★ 一個雙重功能的酵母菌 tRNA 合成酶之研究★ 探討酵母菌中non-AUG起始點的周邊序列對轉譯起始效率的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中文摘要
截至目前為止,GRS1是酵母菌 (Saccharomyces cerevisiae)唯一已證實可以在自然生理條件下利用non-AUG作為轉譯起始點的基因。最近我們實驗室發現了第二個例子,ALA1是酵母菌中唯一的alanyl-tRNA synthetase (AlaRS) 基因,可同時轉譯出兩個具有功能的異構性蛋白質:一個轉譯自AUG1,另一個則轉譯自上游相同讀碼框的ACGACG密碼 (即ACG-25ACG-24) ; 來自AUG1的異構性蛋白質作用於細胞質內,來自ACG-25ACG-24的則作用於粒腺體中。雖然這兩個蛋白質具有幾乎相同的胺基酸序列,但因為存在的胞器不同,故在功能上不能互相取代 (唐惠苓論文,2002)。在本篇論文我希望進一步分析其轉錄及轉譯機制。由 5’RACE(rapid amplification of 5’cDNA ends)的結果得知ALA1可同時轉錄出三條長短不同的訊息RNA,其5’端分別座落在AUG1上游的117、105和54核苷酸上;利用西方點漬法 (western blotting)的分析,我證實ALA1的確可以使用AUG1及其上游的兩個重複ACG密碼作為轉譯起始點做出兩個大小不同的蛋白質,AUG-25的轉譯效率約為non-AUG的3倍。當破壞ACG-25下游的二級結構時,其轉譯效率幾乎不受影響,因此推測這個二級結構對於non-AUG轉譯機制可能並非絕對需要。我們也意外發現UUG-16 及 AUA-1可能也可以充當轉譯起始點做出極微量的蛋白質。以上這些結果顯示利用non-AUG為轉譯起始點的機制可能分佈很廣泛。
摘要(英) Abstract
So far, only the GRS1 gene has been reported to use a naturally occurring non-AUG triplet as the translation initiator in Saccharomyces cerevisiae. Recently, our lab has discovered a second example of non-AUG initiation in the yeast. ALA1 is the only gene in Saccharomyces cerevisiae (alanyl-tRNA synthetase, AlaRS), encodes both cytoplasmic and mitochondrial forms of the enzyme. The former is translationally initiated at the AUG codon (designated as AUG1) close to the 5’-end of its open reading frame, while the latter is initiated from upstream in-frame redundant non-AUG codons (i.e., ACG-25 and ACG-24). In this thesis, I investigated the transcriptional and translational profiles of ALA1, aiming at elucidating the mechanism that is responsible for the bifunctional phenotype of this gene. Transcriptional mapping reveals the existence of three overlapping transcripts for ALA1, with 5’ ends at positions 117, 105, and 54, respectively, relative to the “A” nucleotide of AUG1. Western blot analysis further confirms the initiating activity of the redundant ACG codons. The frequency of initiation at ACG-25/ACG-24 is around 30% relative to that at AUG-25. Results also suggest that certain non-AUG codons in the presequence, such as UUG-16 and AUA-1, are also involved in the synthesis of minor protein isoforms. Unexpectedly, mutations that destroyed the pseudoknot structure, downstream of the redundant ACG codons, did not impair this initiating activity. Taken together, our results suggest that non-AUG initiation is a mechanism more widespread than previously thought.
關鍵字(中) ★ 轉譯
★ 非-AUG
★ 酵母菌
★ ALA1
關鍵字(英) ★ ALA1
★ translation
★ non-AUG
★ Yeast
論文目次 主 目 錄
中文摘要………………………………………………………..….I
英文摘要…………………………………………………………...II
誌謝...................................................................................................III
主目錄…………………………………………………………….. IV
圖目錄...............................................................................................VI
縮寫檢索表………………………………………………………..VII
第一章 緒論………………………………………………….…..1
第二章 材料與方法
? 使用之菌株、載體....………………………………….…6
? 建構質體……………………………………………….…6
? 用點突變方式破壞pseudoknot 二級結構……………..7
? 5’ RACE (Rapid Amplification of cDNA Ends)….…....8
? 西方點漬法 (Western Blotting)
A. 蛋白質製備………………………….………….…..10
B. 西方點漬法………………………………………....11
? 半乳糖苷酶定量及酵素活性分析……………………...13
第三章 結果
一、ALA1基因轉錄出多條訊息RNA………………............14
二、用西方點漬法證明重複的ACG密碼可以做
為轉譯起點……..............…..............................................15
三、破壞mRNA上的pseudoknot二級結構,對於
粒腺體蛋白質的轉譯並無明顯的影響..............................18
四、ACG起始密碼的點突變不會改變ALA1 mRNA
的表現量…………………..………..………………….….18
五、non-AUG半乳糖苷酶酵素活性分析的結果與
西方點漬法類似……………………………………….….19
第四章 討論…………………………………………….…….…20
第五章 參考文獻……………………………………………..…38
附錄一………………………………………….……….…….…...44
plasmid list and primer list………………..…..……….….….….45
圖 目 錄
圖1.aaRS的基本生化功能…………………………….….....23
圖2.選擇性轉錄及轉譯機制……………………………..…..24
圖3.鑑定ALA1 mRNA的5端…………………………..….25
圖4.以西方點墨法觀察由non-AUG轉譯的蛋白質情形….27
圖5.RT-PCR 測定mRNA的表現量及穩定性………….…31
圖6.半乳糖苷酶酵素活性分析定量non-AUG轉譯效率….35
圖7.ALA1基因pseudoknot二級結構的構造及被破壞後
RNA示意圖…...……………...………………………....37
參考文獻 第五章 參考文獻
AcLane, P., Dixon, M., Peters, G., and Dickson, C. (1990) Subcellular fate of the int-2 oncoprotein is determined by choice of initiation codon. Nature 343, 662-665
Arnaud, E., Touriol, C., Boutonnet, C., Gensac, M. C., Vagner, S., Prats, H., and Prats, A. C. (1999) A new 34-kilodalton isoform of human fibroblast growth factor 2 is cap dependently synthesized by using a non-AUG start codon and behaves as a survival factor. Mol. Cell. Biol. 19, 505–514.
Birnboim, H. C. and Doly, J. (1980) A rapid alkaline extraction procedure for screening recombinant plamid DNA. Nucleic acid Res. 7: 1513-1523
Bradford, M. M. (1976) A rapid and sensitive method of the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
Carroll, R. and Derse, D. (1993) Translation of equine infectious anemia virus bicistronic tat-rev mRNA requires leaky ribosome scanning of the tat CTG initiation codon. J. Virol. 67, 1433–1440.
Carter, C. W. Jr. (1993) Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu. Rev. Biochem. 62: 715-748
Chatton, B., Walter, P., Ebel, J. P., Lacroute, F., and Fasiolo, F. (1988) The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. J. Biol. Chem. 263: 52-57.
Chang,K.J.and Wang,C.C. (2004) Translation initiaction from a naturally occurring non-AUG codon in Saccharomyces cerevisiae. J.Biol.Chem.279,13778-13785
Cigan, A. M., Pabich, E. K., and Donahue, T. F. (1988) Mutational analysis of the HIS4 translational initiator region in Saccharomyces cerevisiae. Mol. Cell. Biol. 8: 2964-2975.
Clements, J. M., Laz, T. M., and Sherman, F. (1988) Efficiency of translation initiation by non-AUG codons in Saccharomyces cerevisiae. Mol. Cell. Biol. 8: 4533-4536.
Donahue, T. F. and Cigan, A. M. (1988) Genetic selection for mutations that reduce or abolish ribosomal recognition of the HIS4 translational initiator region. Mol. Cell. Biol. 8: 2955-2963
Fajardo, J. E., Birge, R. B., and Hanafusa, H. (1993) A 31-amino acid N-terminal extension regulates c-Crk binding to tyrosine- phosphorylated proteins. Mol. Cell. Biol. 13, 7295–7302.
Felter, S., Diatewa, M., Schneider, C., and Stahl, A. J. (1981) Yeast mitochondrial and cytoplasmic valyl-tRNA synthetases. Biochem. Biophys. Res. Commun. 98: 727-734.
Florkiewicz, R. Z. and Sommer, A. (1989) Human basic fibroblast growth factor gene encodes four polypeptides: three initiate translation from non- AUG codons. Proc. Natl. Acad. Sci. USA 86, 3978–398
Fu¨tterer, J., Potrykus, I., Bao, Y., Li, L., Burns, T. M., Hull, R., and Hohn (1996) Position-dependent ATT initiation during plant pararetrovirus rice tungro bacilliform virus translation. J. Virol. 70, 2999–3010.
Fuxe, J., Raschperger, E., and Pettersson, R. F. (2000) Translation of p15.5INK4B, an N-terminally extended and fully active form of p15INK4B, is initiated from an upstream GUG codon. Oncogene 19, 1724–1728.
Giegé, R., Sissler, M., and Florentz, C. (1998) Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res. 26: 5017-5035
Hackett, P. B., Petersen, R. B., Hensel, C. H., Albericio, F., Gunderson, S. I., Palmenberg, A. C., and Barany, G. (1986) Synthesis in vitro of a seven amino acid peptide encoded in the leader RNA of Rous sarcoma virus. J. Mol. Biol. 190, 45–57.
Hann, S. R., Aloan-Brown, K., and Spotts, G. D. (1992) Translational activation of the non-AUG-initiated c-myc 1 protein at high cell densities due to methionine deprivation. Genes Dev. 6, 1229-1240
Kozak, M. (1989) Context effects and inefficient initiation at non-AUG codons in eukaryotic cell-free translation systems. Mol. Cell. Biol. 9: 5073-5080.
Kozak, M. (1990) Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proc. Natl. Acad. Sci. USA 87: 8301-8305.
Kozak, M. (1991) An analysis of vertebrate mRNA sequences: intimationsof translational control. J. Cell Biol. 115, 887–903.
Kozak, M. (1991) Structural features in eukaryotic mRNAs that modulate the initiation of translation. J. Biol. Chem. 266: 19867-19870.
Kozak, M. (1997) Recognition of AUG and alternative initiator codons is augmented by G in position +4 but is not generally affected by the nucleotides in positions +5 and +6. EMBO J 16(9):2482-92
Kozak, M. (1999) Initiation of translation in prokaryotes and eukaryotes. Gene 234: 187-208
Lock, P., Ralph, S., Stanley, E., Boulet, I., Ramsay, R., and Dunn, A. R. (1991) Two isoforms of murine hck, generated by utilization of alternative translational initiation codons, exhibit different patterns of subcellular localization. Mol. Cell. Biol. 11, 4363–4370.
Manistic, T., et al. (1989) Molecular cloning a laboratory manual. Cold Spring Harbor Laboratory.
Martinis, S. A. and Schimmel, P. (1996) In Escherichia coli and Salmonella Cellular and Molecular Biology, ed. Neidhardt, F. C. (Am. Soc. Microbiol., Washington, DC), 2nd Ed., pp. 887-901
Maréchal-Drouard, L., Weil, J. H., and Dietrich, A. (1993) Transfer RNAs and transfer RNA genes in plants. Annu. Rev. Cell. Biol. 8: 115-131.
Mireau, H., Lancelin, D., and Small, I. D. (1996) The same Arabidopsis gene encodes both cytosolic and mitochondrial alanyl-tRNA synthetases The Plant Cell 8: 1027-1039
Muralidhar, S., Becerra, S. P., and Rose, J. A. (1994) Site-directed mutagenesis of adeno-associated virus type 2 structural protein initiation codons: effects on regulation of synthesis and biological activity. J. Virol. 68, 170–176.
Nakai, K. and Horton, P. (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization Trends Biochem. Sci. 24: 34-36
Natsoulis, G., Hilger, F., and Fink, G. R. (1986) The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae. Cell 46: 235-243.
Nett, J. H., Kessl, J., Wenz, T., and Trumpower, B. L. (2001) The AUG start codon of the Saccharomyces cerevisiae NFS1 gene can be substituted for by UUG without increased initiation of translation at downstream codons. Eur. J. Biochem. 268: 5209-5214
Packham, G., Brimmell, M., and CleveLane, J. L. (1997) Mammalian cells express two differently localized Bag-1 isoforms generated by alternative translation initiation. Biochem. J. 328, 807-813
Pelchat, M. and Lapointe, J. (1999) Aminoacyl-tRNA synthetase genes of Bacillus subtilis: organization and regulation. Biochem. Cell Biol. 77: 343-347
Portis, J. L., Spangrude, G. J., and McAtee, F. J. (1994) Identification of a sequence in the unique 5’ open reading frame of the gene encoding glycosylated gag which influences the incubation period of neurodegenerative disease induced by a murine retrovirus. J. Virol. 68, 3879–3887.
Raney, A., Baron, A. C., Mize, G. J., Law, G. L., and Morris, D. R. (2000) In vitro translation of the upstream open reading frame in the mammalian mRNA encoding S-adenosylmethionine decarboxylase. J. Biol. Chem. 275, 24444–24450.
Ripmaster, T. L., Shiba, K., and Schimmel, P. (1995) Wide cross-species aminoacyl-tRNA synthetase replacement in vivo: yeast cytoplasmic alanine enzyme replaced by human polymyositis serum antigen. Proc. Natl. Acad. Sci. USA 92: 4932-4936
Saris, C. J., Domen, J., and Berns, A. (1991) The pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG. EMBO J. 10, 655-664
Sherman, F., Stewart, J. W., and Schweingruber, A. M. (1980) Mutants of yeast initiating translation of iso-1-cytochrome c within a region spanning 37 nucleotides. Cell 20: 215-222.
Sikorski, R. S. and Hieter, P. (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19-27
Souciet, G., Menand, B., Ovesna, J., Cosset, A., Dietrich, A., and Wintz, H. (1999) Characterization of two bifunctional Arabdopsis thaliana genes coding for mitochondrial and cytosolic forms of valyl-tRNA synthetase and threonyl-tRNA synthetase by alternative use of two in-frame AUGs. Eur. J. Biochem. 266: 848-854.
Spotts, G. D., Patel, S. V., Xiao, Q., and Hann, S. R. (1997) Identification downstream-initiated c-myc proteins which are dominant-negative inhibitors of transactivation by full-length c-myc proteins. Mol. Cell. Biol. 17, 1459–1468.
Yoon, H. and Donahue, T. F. (1992) Control of translation initiation in Saccharomyces cerevisiae. Mol. Biol. 6: 1413-1419
唐蕙苓 (2002) 酵母菌轉譯起始機制的研究。中央大學碩士論文。
指導教授 王健家(Chien-Chia Wang) 審核日期 2004-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明