博碩士論文 91224014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.228.24.192
姓名 張如慧(Ju-Hui Chang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 MyoD對於PGC-1α 基因表現之調控機制
(The mechanism of PGC-1α gene expression regulated by MyoD)
相關論文
★ Thirst control of water-seeking behavior in Drosophila★ 雄性素受體對於肌肉前驅細胞決定的功用
★ Nanog和Oct4表現對肌肉分化之影響★ 大量表現幹細胞專有轉錄因子抑制肌肉細胞走向分化
★ FOXOs 轉錄調控因子家族對肌肉細胞末期分化的影響★ 大量表現 Oct4 與 Nanog 抑制肌纖維母細胞 C2C12 分化
★ 在終極肌肉分化時,肌肉性bHLH轉錄因子對PGC-1α的調控★ FoxOs 大量表現對肌肉細胞末期分化的影響
★ 觀察肌肉生成轉錄因子如何調控 M- 和N- cadherin 表現★ Oc4和Nanog共同抑制末端肌肉分化
★ FoxO6在肌原母細胞中的代謝及分化中所扮演的角色★ PGC-1α 與 Stra13 間之交互作用
★ 探討大量表現 FoxO6 對肌肉終極分化的影響以及尋找 FoxO6 蛋白質在 PGC-1 alpha 啟動子上的結合位★ 探討丙戊酸 (Valporic acid) 於肌肉細胞中活化 Oct4 promoter 的機制
★ 探討小鼠骨骼肌中FoxO6的表現情形★ 探討FoxO1在肌肉生成細胞中的表現位置變化及抑制肌肉細胞分化的機制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) MRF (Myogenic Regulatory Factor)家族中basic Helix-Loop-Helix轉錄因子-MyoD、Myf-5、Myogenin以及MRF-4,為肌肉細胞品系的決定者,而它們也是調控肌肉細胞末期分化的主要因子。若將MRF家族的其中一員於非肌肉細胞中過度表現時,則會使得這些細胞轉變成肌肉細胞。然而肌肉細胞要轉變為成熟的肌肉細胞,則還須有MEF-2 (Myocyte Enhancer Factor-2)的參與。MEF-2和肌肉生成之bHLH蛋白會以形成異行雙聚物的方式去調控肌肉特化基因的表現進而促進肌肉細胞的成熟。而另一轉錄因子FKHR (Forkhead in Rhabdormyosarcoma)在肌肉末期分化上也扮演著相同的重要角色,它會促進肌纖維母細胞間的融合,此為肌肉細胞分化的必要過程。最近的研究指出,MEF-2和FKHR皆會調控PGC-1α (Peroxisome proliferator-activated receptor (PPAR)-γ Coactivator-1)的表現,而PGC-1α是調控慢收縮肌纖維形成的重要因子。既然MEF-2 和 FKHR 這這兩者都會影響肌肉之末期分化,因此引發我們進一步去研究,肌肉中是否有其他肌肉特有轉錄因子,例如MyoD或其同一家族的其他成員是否也會調控PGC-1α。本篇主要是針對肌肉細胞品系決定的調節者MyoD (myogenic determination factor) 進行研究。在本篇研究中,我們發現 PGC-1 α 核心驅動子上之兩個 E-box在MyoD之作用上扮演著極關鍵的角色。將這兩個E-box其中之一突變後,都會明顯減少經由MyoD 所誘發之PGC-1 α 核心驅動子之轉錄活性。此外,我們也發現當肌纖維母細胞分化成肌管(myotube)時,PGC-1α的表現也隨之增加。而根據我們以反轉錄病毒方法所製備之MyoD穩定表達細胞株也發現,當其分化成肌管時,PGC-1α的表現同樣也會隨之增加。因為 PGC-1α被認為是決定肌纖維種類之主要調控者,我們的結果顯示MyoD不僅是和肌肉品系的決定以及末期分化有關,它也可能會影響成熟肌肉細胞的肌纖維種類以及代謝方式的轉換。
摘要(英) Determination of myogenic lineage is dictated by the function of bHLH transcription factors of MRF (Myogenic Regulatory Factor) family, which consists of MyoD, Myogenin, Myf-5 and MRF-4, and they are also the major factors regulating terminal differentiation of muscle cells. Overexpression of any one of the MRF family in several non-myogenic cells can induce their trans-differentiation into myogenic lineage. However, myoblsts differentiate into mature muscle cells still need the help of MEF-2 (Myocyte Enhancer Factor-2). MEF-2 proteins can cooperate with myogenic bHLH proteins as a heterodimer to regulate the expression of muscle-specific genes and commit myoblasts to terminal differentiation. Another factor, FKHR, also plays a role in terminal differentiation by promoting the fusion of myoblasts which is the essential process of myoblasts differentiation. Recently, PGC-1α (Peroxisome proliferator-activated receptor PPAR-γ Coactivator-1α) was shown to promote the formation of slow-twitch fibers, and which is regulated by MEF2 and FKHR. Since MEF-2 and FKHR are both implicated in the terminal muscle differentiation, it prompts us to study the regulation of PGC-1α in muscle by other muscle-specific transcription factors, such as MyoD and its family members. Here we show that MyoD can activate PGC-1α expression by binding to two putative E-boxes localized to its core promoter. Mutation of either site significantly reduced MyoD mediated transactivation. We also found out that when myoblast differentiates into myotube the expression of PGC-1α is up-regulated. The expression of PGC-1α also increased in retrovirus-mediated MyoD-overexpressed cells when they differentiate into myotubes. Since PGC-1α is suggested to be the principle factor regulating muscle fiber type determination, our results indicate that MyoD is not only involved in the lineage determination and terminal differentiation, but may also implicated in the fiber-type and metabolic switch of mature muscle cells.
關鍵字(中) ★ 肌肉 關鍵字(英) ★ MyoD
★ PGC-1
論文目次 目錄
中文摘要………………………………………………………….......І
Abstract………………………………………………………….......Ⅱ
目錄………………………………………………………………….Ш
圖目錄……………………………………………………………….Χ
縮寫與全名對照表………………………………………………......ⅩⅡ
第一章、 緒論
I. 肌肉的起源……………………..……….……...……………..1
II. MyoD在肌肉細胞的功能………………..……………….....1
III. PGC-1α的功能……………………………………………..4
IV. 研究動機與目的…………..………………………………...5
第二章、 材料與方法
І.實驗材料
1. 細胞株
1.1細胞培養…………………………………………….……..7
2. 菌株
2.1菌株培養…………………………………………………….7
2.2菌株的保存………………………………………………….7
Ⅱ. PGC-1α-Luc 報告質體(reporter plasmid)之構築
1. pRL-hPGC-1α報告質體的次選殖(subclone)
1.1 大腸桿菌勝任細胞之製備(Preparation of E. coli
competent cells)………………………………………...8
1.2 大腸桿菌的轉型作用 (Transformation)………………....8 1.3 質體DNA 的少量製備 (Mini-preparation) – 用鹼處理法 (Alkaline lysis method) :
1.4 篩選 (Screening)
1.4.1 核酸限制酶的剪切:……………………………………9
1.5 插入DNA (PGC-1α)的製備……………………………..10
1.5.1限制酶的剪切………………………………………10
1.5.2插入(Insert)DNA的純化……………………………10
1.6 載體DNA (pGL3 basic)的製備…………………………10
1.7 載體DNA (pGL3 basic)的5’端去磷酸根反應………….11
1.7.1限制酶的剪切………………………………………11
1.7.2載體DNA (pGL3 basic)的5’端去磷酸根反應…….11
1.8 接合反應 ( Ligation )……………………………………12
1.9篩選 (Screening)………………………………………….12
1.9.1質體DNA 的少量製備 (Mini-preparation) –
用鹼處理法(Alkaline lysis method) :……………………..12
1.9.2核酸限制酶剪切…………………………………………12
1.10 核酸定序(DNA sequencing)…………………………....12
2. PGC-1α promoter 較短片段的製備
2.1 限制酶的剪切…………………………………………….12
2.1.1 pGL3-hPGC-1α (-630 ~ +90)-Luc…………………..12
2.1.2 pGL3-hPGC-1α (-444 ~ +90)-Luc…………………..13
2.1.3 pGL3-hPGC-1α (-992 ~ -444)-Luc………………….13
2.1.4 pGL3-hPGC-1α (-676 ~ +90)-Luc…………………..13
2.2 接合反應 ( Ligation )…………………………………….14
2.3 篩選 (Screening)…………………………………………14
2.3.1質體DNA 的少量製備 (Mini-preparation) –
用鹼處理法(Alkaline lysis method) :…………………...14
2.3.2核酸限制酶剪切…………………………………….14
3. PGC-1α promoter (-233 ~ +19)野生型片段的製備
3.1 引子的設計………………………………………………14
3.2 聚合酶鏈反應 (Polymerase Chain Reaction, PCR)……..15
3.3 聚合酶鏈反應產物的修飾………………………………..15
3.4 載體DNA (pGL3 basic)的5’端去磷酸根反應…………...16
3.4.1限制酶的剪切………………………………………..16
3.4.2載體DNA (pGL3 basic)的5’端去磷酸根反應………16
3.5 聚合酶鏈反應篩選 (PCR screening)…………………....16
4. PGC-1α core promoter 突變型片段的製備
4.1 引子的設計……………………………………………...16
4.2 模板DNA的合成………………………………………17
4.3 聚合酶鏈反應 (Polymerase Chain Reaction, PCR)……17
4.4 聚合酶鏈反應產物的修飾……………………………...18
4.4.1聚合酶鏈反應產物的分析…………………………18
4.4.2聚合酶鏈反應產物的修飾…………………………18
4.5 接合反應 ( Ligation )…………………………………..18
Ⅲ. PGC-1α promoter 於哺乳類細胞中之活性
1. 質體pGL3-hPGC-1α的轉染 (Transfection)
1.1 細胞培養…………………………………………….18
1.2 轉染作用…………………………………………….19
1.3 螢火蟲冷光活性方法……………………………….19
Ⅳ. PGC-1α promoter與核蛋白質之相互作用
1. 電泳速度變動分析法 (Electrophoresis Mobility Shift
Assay, EMSA)
1.1 核蛋白的萃取……………………………………….20
1.2 蛋白質的定量……………………………………….20
1.3 探針 (Probe)的製備………………………………...20
(1) 引子的設計:…………………………………….20
(2) 聚合酶鏈反應:………………………………………21
1.4 探針的標定(Labeling)…………………………………….21
1.5 探針的純化……………………………………………….21
1.5.1聚丙烯醯胺膠體分離法 (PAGE Separation)………21
1.5.2 DNA位於膠體上位置之辨認 (Band Recognition)..21
1.5.3 DNA的收集………………………………………...22
1.6 結合分析法 (Binding assay)……………………….........22
Ⅴ. pMSCV-neo-mMyoD表現載體之構築
1. 載體DNA ( pMSCV neo ) 的製備………………………..23
2. 插入DNA ( MyoD )的製備……………………………….23
3. 接合反應 ( Ligation )……………………………………..23
4. 篩選 ( Screening )…………………………………………23
Ⅵ. 利用反轉錄病毒( Retrovirus )將MyoD基因表現於哺乳類細胞中
1. 反轉錄病毒的製備:
1.1 細胞培養………………………………………………24
1.2 轉染作用………………………………………………24
2. 利用反轉錄聚合酶鏈反應( RT-PCR )篩選反轉錄病毒製備成功
2.1 Total RNA的抽取……………………………………..24
2.2 反轉錄酶反應(Reverse Transcriptase, RT)………...25
2.3 聚合酶鏈反應( Polymerase Chain Reaction, PCR )..25
3. 質體pMSCV-neo-MyoD的感染(Infection)
3.1 細胞培養……………………………………………..26
3.2 感染作用……………………………………………..26
4. 利用反轉錄聚合酶鏈反應篩選MyoD穩定表達細胞株
4.1 Total RNA的抽取…………………………………..26
4.2 反轉錄酶反應(Reverse Transcriptase, RT)………...26
4.3 聚合酶鏈反應( Polymerase Chain Reaction, PCR ).26
5. 利用西方點墨法(Immunoblotting)偵測MyoD之表現..27
Ⅶ.即時定量聚合酶鏈反應( Real- Time PCR )…………….27
Ⅷ. 利用反轉錄聚合酶鏈反應判別肌纖維種類……………27
第三章、結果……………………………………………….29
第四章、討論………………………………………...….….37
第五章、參考文獻…………………………………...……57
反轉錄病毒的製備流程………………………………61
附錄一……………………………………………..…………62
附錄二……………………………………………..…………66
附錄三……………………………………………..…………67
附錄四……………………………………………..…………69
圖目錄
圖一、 轉錄因子對於PGC-1α promoter活性的影響
………………………………………………………...............40
圖二、 不同濃度的MyoD對於PGC-1α promoter活性
之影響…………………………………………………………41
圖三、 以自體接合製備較短的PGC-1α promoter片段
………………………………………………………………..42
圖四、 MyoD之轉錄活性對於PGC-1α promoter之調控是必要的……………………………………………………………...43
圖五、 以聚合酶鏈反應篩選PGC-1α promoter ( -233~+90 )區間之
質體……………………………………………………………44
圖六、 MyoD對於PGC-1α promoter -233 ~+90區間活性的影響
………………………………………………………………45
圖七、 MRF家族轉錄因子對於PGC-1α core promoter活性的影響
……………………………………………………………….46
圖八、以聚合酶鏈反應篩選突變型PGC-1α core promoter質體
……………………………………………………………….47
圖九、MyoD對於突變型PGC-1α core promoter活性的影響
…..……………………………………………………………48
圖十、探討MyoD蛋白質和PGC-1α promoter之間的作用關係
….…………………………………………….......................49
圖十一、MyoD 反轉錄病毒之建立流程圖
………………………………………………………………50
圖十二、 MyoD穩定表達細胞株之建立流程及確認圖
…………………………………………………………..51
圖十三、 MyoD穩定表達細胞株之形態圖
………………………………………………………….52
圖十四、 MyoD穩定表達細胞株對於PGC-1基因表現的影響…………………………………………….................53
圖十五、 PGC-1基因在肌纖維母細胞中的表現…………….....55
圖十六、 纖維種類指標基因(fiber-type marker genes)在MyoD
穩定表達細胞株之表現情形………….........................56
參考文獻 1. AB Lassar, J. B., D Lockshon, RL Davis, S Apone , SD Hauschka,and H Weintraub. 1989. MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell 58:823-31.
2. AB Lassar, S. S. a. B. N. 1994. Regulatory mechanisms that coordinate skeletal muscle differentiation and cell cycle withdrawal. Curr. Opin. Cell Biol. 6:788-94.
3. AE Munsterberg, J. K., DA Bumcrot, AP McMahon and AB Lassar. 1995. Combinatorial signaling by Sonic hedgehog and Wnt family members induces myogenic bHLH gene expression in the somite. Genes Dev. 9:2911-22.
4. AP Russell, J. F., S Schreiber, M Praz, A Crettenand, C Gobelet, CA Meier, DR Bell, A Kralli, JP Giacobino and O Deriaz. 2003. Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes 52:2874-81.
5. Borello, G. C. a. U. 1999. Wnt signaling and the activation of myogenesis in mammals. EMBO J. 18:6867-72.
6. D Knutti, A. K. a. A. K. 2000. A Tissue-Specific Coactivator of Steroid Receptors, Identified in a Functional Genetic Screen. Mol. Cell Biol. 20:2411-22.
7. Douarin, C. O. a. N. L. 1992. Two myogenic lineages within the developing somite. Development. 114:339-53.
8. DS Spinner, S. L., SW Wang and J Schmidt. 2002. Interaction of the myogenic determination factor myogenin with E12 and a DNA target: mechanism and kinetics. J Mol Biol. 317:431-45.
9. E Dodou, S. X. a. B. B. 2003. mef2c is activated directly by myogenic basic helix-loop-helix proteins during skeletal muscle development in vivo. Mechanisms of Development 1120:1021-32.
10. Grosveld, P. B. a. G. 2003. FKHR (FOXO1a) is required for myotube fusion of primary mouse myoblasts. EMBO J. 22:1147-57.
11. H Daitoku, K. Y., H Matsuzaki, M Hatta and A Fukamizu. 2003. Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR. Diabetes 52:642-9.
12. H Weintraub, R. D., S Tapscott, M Thayer, M Krause, R Benezra, TK Blackwell, D Turner, R Rupp and S Hollenberg. 1991.
The myoD gene family: nodal point during specification of the muscle cell lineage. Science 251:761-6.
13. HM Stern, A. B. a. S. H. 1995. Myogenesis in paraxial mesoderm: preferential induction by dorsal neural tube and by cells expressing Wnt-1. Development 121:3675-86.
14. IB Sears, M. M., LG Kovacs and RA Graves. 1996. Differentiation-dependent expression of the brown adipocyte uncoupling protein gene: regulation by peroxisome proliferator-activated receptor gamma. Mol Cell Biol. 16:3410-9.
15. IL de la Serna, K. C. a. A. I. 2001. Mammalian SWI/SNF complexes promote MyoD-mediated muscle differentiation. Nat Genet. 27:187-90.
16. J Lin, H. W., PT Tarr, CY Zhang, Z Wu, O Boss, LF Michael, P Puigserver, E Isotani, EN Olson, BB Lowell, R Bassel-Duby and BM Spiegelman. 2002. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418:797-801.
17. J Naya, B. M., J Shelton, JA Richardson, RS Williams and EN Olson. 2000. Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo. J Biol Chem. 275:4545-8.
18. J Rhee, Y. I., JC Yoon, P Puigserver, M Fan, FJ Gonzalez and BM Spiegelman. 2003. Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. Proc Natl Acad Sci U S A. 100:4012-7.
19. JC Yoon, P. P., G Chen, J Donovan, Z Wu, J Rhee, G Adelmant, J Stafford, CR Kahn, DK Granner, CB Newgard and BM Spiegelman. 2001. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413:131-8.
20. JD Molkentin, B. B., JF Martin and EN Olson. 1995. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 83:1125-36.
21. JM Weitzel, C. R. a. H. S. 2001. Two thyroid hormone-mediated gene expression patterns in vivo identified by cDNA expression arrays in rat. Nucleic Acids Res. 29:5148-55.
22. Lance-Jones, J. S. a. C. 1995. Slow and fast muscle fibers are preferentially derived from myoblasts migrating into the chick limb bud at different developmental times. Dev Biol. 170:321-37.
23. M Soulez, C. R., P Chafey, D Hentzen, M Vandromme, N Lautredou, N Lamb, A Kahn and D Tuil. 1996. Growth and differentiation of C2 myogenic cells are dependent on serum response factor. Mol. Cell. Biol. 16:6065-74.
24. MJ Barbera, A. S., N Pedraza, R Iglesias, F Villarroya and M Giralt. 2001. Peroxisome proliferator-activated receptor alpha activates transcription of the brown fat uncoupling protein-1 gene. A link between regulation of the thermogenic and lipid oxidation pathways in the brown fat cell. J Biol Chem. 276:1486-93.
25. MP Czubryt, J., GI Fishman and EN Olson. 2003. Regulation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 alpha ) and mitochondrial function by MEF2 and HDAC5. Proc Natl Acad Sci U S A. 100:1711-6.
26. MW Berchtold, H. B. a. M. M. 2000. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev. 80:1215-65.
27. Olson, J. M. a. E. 1996. Combinatorial control of muscle development by basic
helix-loop-helix and MADS-box transcription factors. Proc. Natl. Acad. Sci. 93:9366-73.
28. Olson, J. M. a. E. 1996. Defining the regulatory networks for muscle development. Curr Opin Genet Dev. 6:445-53.
29. P Puigserver, J. R., J Lin, Z Wu, J C Yoon, CY Zhang, S Krauss, VK Mootha, BB Lowell and BM Spiegelman. 2001. Cytokine Stimulation of Energy Expenditure through p38 MAP Kinase Activation of PPAR?Coactivator-1. Mol.Cell. 8:971-82.
30. P Puigserver, Z. W., CW Park, R Graves, M Wright and BM Spiegelman. 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829-39.
31. P Zhang, C. W., D Liu, M Finegold, JW Harper and SJ Elledge. 1999. p21(CIP1) and p57(KIP2) control muscle differentiation at the myogenin step. Genes Dev. 13:213-24.
32. RB Vega, J. H., and DP Kelly. 2000. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol. 20:1868-76.
33. Sartorelli, P. P. a. V. 2000. Regulation of muscle regulatory factors by DNA-binding, interacting proteins, and post-transcriptional modifications. J. Cell. Physiol. 185:155-73.
34. Scarpulla, R. 2002. Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim Biophys Acta. 1576:1-14.
35. SJ Du, J. G. a. V. A. 2003. Muscle-specific expression of myogenin in zebrafish embryos is controlled by multiple regulatory elements in the promoter. Comp Biochem Physiol B Biochem Mol Biol. 134:123-34.
36. SL Voytik, M. P., SF Badylak and SF Konieczny. 1993. Differential expression of muscle regulatory factor genes in normal and denervated adult rat hindlimb muscles. Dev Dyn. 198:214-24.
37. SM Hughes, K. K., M Rudnicki and AM Maggs. 1997. MyoD protein is differentially accumulated in fast and slow skeletal muscle fibres and required for normal fibre type balance in rodents. Mech Dev. 61:151-63.
38. T Yagami-Hiromasa, T. S., T Kurisaki, K Kamijo, Y Nabeshima and A Fujisawa-Sehara. 1995. A metalloprotease-disintegrin participating in myoblast fusion. Nature 377:652-6.
39. TA McKinsey, C. Z. a. E. O. 2001. Control of muscle development by dueling HATs and HDACs. Curr Opin Genet Dev. 11:497-504.
40. V Sartorelli, J. H., Y Hamamori and L Kedes. 1997. Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol. Cell. Biol. 17:1010-26.
41. Williams, E. O. a. R. 2000. Remodeling muscles with calcineurin. Bioessays 22:510-9.
42. Winter, H. A. a. B. 1998. Muscle differentiation: more complexity to the network of myogenic regulators. Curr. Opin.Genet. Dev. 8:539-44.
43. Wold, K. Y. a. B. 1996. Skeletal muscle determination and differentiation: story of a core regulatory network and its context. Curr. Opin. Cell Biol. 8: 877-89.
44. Z Wu, P. P., U Andersson, C Zhang, G Adelmant, V Mootha, A Troy, S Cint, B Lowell, RC Scarpulla and BM Spiegelman. 1999. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115-24.
45. Z Yan, A. S., S Schiaffino, R Bassel-Duby and RS Williams. 2001. Regulatory elements governing transcription in specialized myofiber subtypes. J Biol Chem. 276:17361-6.
.
指導教授 陳盛良(Shen-Liang Chen) 審核日期 2005-4-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明