博碩士論文 91224016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.137.171.121
姓名 郭如玉(Ju-Yu Kuo)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 AtNPR1轉殖番茄之性狀分析及抗病機制研究
(Characterization of AtNPR1 transgenic tomato and study of defense mechanism)
相關論文
★ 陰離子界面活性劑sodium dodecylbenzene sulfonate分解菌篩選與脫磺酸酵素研究★ 鄰苯二酚加氧酵素的熱穩定性提昇研究
★ Triton X-100 分解菌之分離和分解酵素之特性研究★ Triton X-100加氧酵素之純化與定性
★ Lactobacillus reuteri於酸性與膽鹽環境中之蛋白質體研究★ 蕃茄根部受銅逆境之基因調控
★ Pseudomonas nitroreducens TX1 異化辛基苯酚聚氧乙基醇之功能性蛋白質體學:以二維電泳法分析等電點4-8之蛋白質表現★ Pseudomonas nitroreducens TX1之具耗氧活性之麩胺酸合成酶之單離
★ 人類細胞株生產含多種亞型的 干擾素-a之蛋白質體學研究★ 辛基苯酚之分解:分解菌和生物復育之菌相研究
★ 分解辛基苯酚聚氧乙基醇之耗氧酵素(二氫硫辛醯胺脫氫酶)的純化與定性★ Pseudomonas putida TX2分解辛基苯酚聚氧乙基醇及其具雌激素活性代謝物之研究
★ 以功能性蛋白質體學研究Pseudomonas nitroreducens TX1生長於辛基苯酚聚氧乙基醇之代謝與逆境反應★ 以功能性蛋白質體學研究Pseudomonas putida TX2生長於 辛基苯酚聚氧乙基醇與辛基苯酚之代謝與逆境反應
★ 以功能性基因體學研究細菌異化辛基苯酚 聚氧乙基醇及抗逆境之基因★ Pseudomonas nitroreducens TX1中二氫硫辛醯胺脫氫酶分解辛基苯酚聚氧乙基醇之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 植物常會遭受不同的生物及非生物性逆境的危害,然而當植物遇到環境逆境時,無法立即移動脫逃,需要仰賴體內啟動一連串的防禦機制,來達到自我保護的功能。而屬生物性逆境中的植物病蟲害,一直是造成全球農作物產量及品質受損之重要因素;近年來,利用植物遺傳工程以培育抗逆境新作物品種,已成為常被應用且有效的病害管理方法。近幾年科學家利用篩選突變株發現NPR1 (nonexpresser of PR genes),為一在植物啟動系統性誘導抗病機制時重要的調控蛋白質。本實驗室先前培育出大量表現阿拉伯芥NPR1 (AtNPR1 ) 之番茄轉殖品系 (CL5915),並將其對八種重要之番茄病害的抗病性作測試,結果證實,這些轉殖品系具有廣效抗病性,特別對維管束病害及葉部病害,然而其抗病機制至今仍不清楚。本論文針對特定AtNPR1轉殖品系,以青枯病菌為研究對象,分析其分子抗病機制,並評估其園藝性狀。實驗結果發現,在轉殖品系中,葉部組織之特定PR基因表現量確實較未轉殖品系高,推測此為轉殖品系對葉部病害有產生抗性的原因之一;但根部組織之特定PR基因表現量和未轉殖品系無顯著差異,無法解釋AtNPR1轉殖品系對於維管束病害之抗性。所以進一步利用cDNA微陣列技術分析大量基因,以探討AtNPR1轉殖品系可能誘導之抗病機制。進一步分析及比對微陣列結果發現,AtNPR1轉殖品系有部分基因會共同受青枯病菌與過量銅誘導表現,推測這兩個防禦訊息間有相互交集。而本論文也進一步將番茄植物處理園藝上常見的非生物性逆境,證實未轉殖及轉殖品系對非生物性逆境的反應耐受性一致,並沒有因為基因轉殖而造成性狀上的缺失。由於現有的轉殖品系 (CL5915) 對於番茄嚴重的病毒病害的抗性沒有顯著提高,所以本論文也將AtNPR1轉殖入一個對番茄黃葉捲曲病毒有中度抗性的番茄品種 (CLN2116B),並已成功培育具抗病性的新番茄品系,預期將來可進一步應用於栽培品種,當作抗病育種之抗病性狀來源,以傳統育種雜交法增加其抗病範圍,有效達成作物病害管理防治目的。
摘要(英) Abstract
In nature, crop plants constantly encounter various biotic and abiotic stresses, which can severely affect agricultural productivity. Pathogens, particularly, are limiting factors reducing crops quality and quantity seriously. Genetic engineering of disease-resistance through transferal of plant defense-related genes into crop is a valuable disease-control approach. Among the defense genes used to genetically engineer systemic acquired resistance in plants, Arabidopsis NPR1 (nonexpresser of PR genes) is of particular interest for its being a central regulator of plant defense responses. The exploration of empolying Arabidopsis NPR1 (AtNPR1) gene for genetics engineering disease-resistance in tomato plants have led to the production of transgenic tomato lines conferring broad-spectrum disease-resistance, especially to vascular and leaf pathogens. In this work, the possible resistance mechanism employed by a selected AtNPR1 transgenic line and its interactions with Ralstonia solanacerarum were further studied. The results showed that some PR (pathogenesis-related) genes were constitutively expressed at a high level in the leaf tissues of the transgenic plants and thus may account for the enhanced resistances to the leaf pathogens. By further employing cDNA microarray approach, using customized tomato cDNA microarray, a group of putative AtNPR1 overexpression-induced genes were identified and a model for defense mechanism is proposed. By cross-referencing these data with the microarray data obtained from other abiotic stress studies, possible cross-links between biotic stress and heavy metal stress response were revealed. Evaluation of the horticulture traits of the transgenic tomato showed that the transgenic plants responded similarity, as did the wild type plants under drought and salinity stress. Furthermore, because none of the transgenic lines generated in the genetic background of CL5915 tomato cultivar conferred enhanced resistance to virus diseases, a tomato cultivars, CLN2116B, which carries the resistance trait to tomato yellow leaf curl virus was used as the background cultivar for transformation with AtNPR1. New CLN2116B transgenic plants were selected and characterized. Molecular analyzes revealed that expression of some PR genes was constitutively enhanced in these transgenic plants, suggesting a potential enhanced of disease-resistance in these transgenic plants.
關鍵字(中) ★ cDNA 微陣列
★ AtNPR1轉殖番茄
★ 抗病機制
關鍵字(英) ★ defense resistance mechanism
★ cDNA microarray
★ AtNPR1 transgenic tomato
論文目次 目錄
中文摘要…………………………………………………………………
英文摘要…………………………………………………………………
目錄………………………………………………………………………
圖目錄……………………………………………………………………
表目錄……………………………………………………………………
附錄………………………………………………………………………
縮寫與全名對照表………………………………………………………
第一章 緒論……………………………………………………………..
一、番茄簡介……………………………………………………………
二、番茄病害……………………………………………………………12
三、植物抗病機制………………………………………………………
四、植物基因轉殖於抗病育種上之應用………………………………
五、NPR1在植物系統性誘導抗病機制中所扮演之角色…………….
六、DNA微陣列應用於植物病害研究………………………………..
七、研究動機……………………………………………………………
第二章 材料與方法……………………………………………………..
一、實驗材料……………………………………………………………
(一) 植物材料………………………………………………………
(二) 番茄的種植及逆境條件的處理………………….……………
1. 生物性逆境的處理條件……………………………………..
2. 非生物性逆境的處理條件…………………………………..
二、實驗方法……………………………………………………………
(一) DIG標記探針之製作……………………………………….…
(二) 總核醣核酸之純化及電泳分析……………………………….
(三) 北方點墨法…………………………………………………….
(四) 反轉錄聚合酶連鎖反應………………………………….……
(五) cDNA微陣列技術……………………………………….…….
1. cDNA探針之製備………………………………………..….
2. 雙色螢光基因微陣列雜交反應…………………………….
3. 資料分析…………………………………………………….
(六) 基因組去氧核醣核酸之純化及電泳分析…………….………
(七) 南方墨點法…………………………………………….………
(八) 番茄CLN2116B品系之基因轉殖…………………….………
第三章 結果…………………………………………………………
一、AtNPR1轉殖番茄品系抗病機制之探討…………………….…….
(一) 轉殖基因及防禦相關基因在轉殖品系之表現………….……
(二) 轉殖品系中可能受AtNPR1或青枯病菌誘導之基因….…….
二、AtNPR1轉殖番茄品系對非生物性逆境之耐受性比較…………..
三、番茄CLN2116B抗病品系之培育………………………………...
第四章 討論…………………………………………………………..….
第五章 建議………………………………………………………………
參考文獻…………………………………………………………………
圖目錄
圖一、 以北方點墨法分析 AtNPR1基因在轉殖植物中的表現…….
圖二、 以北方點墨法分析 PR1b1基因在轉殖植物中的表現………
圖三、 以北方點墨法分析 PR1p6基因在轉殖植物中的表現………
圖四、 以北方點墨法分析β-1, 3-glucanase基因在轉殖植物中
的表現…………………………………………………………..
圖五、 以北方點墨法分析acidic chitinase 9基因在轉殖植物中
的表現…………………………………………………………..
圖六、 在AtNPR1轉殖品系可能受誘導表現之基因……………..
圖七、 以青枯病菌處理AtNPR1轉殖品系後可能受誘導表現之基因……………………………………………………………
圖八、 轉殖品系可能受AtNPR1誘導表現之基因來源分配圖……….
圖九、 維恩圖表示可能共同受生物性及非生物性逆境誘導之
基因……………………………………………………………..
圖十、 確認微陣列實驗所得基因之表現……………………………..
圖十一、未轉殖與轉殖品系對非生物性逆境處理之耐受性比較…….
圖十二、番茄CLN2116B轉殖品系之篩選…………………………….
圖十三、以分子生物技術分析CLN2116B轉殖品系基因表現……….
圖十四、以北方點墨法分析在CLN2116B轉殖品系中防禦基因
之表現…………………………………………………………..
圖十五、AtNPR1轉殖品系可能被誘導之防禦機制……………………
表目錄
表一、番茄病害防禦微陣列中可能受AtNPR1誘導之基因……….….
表二、IBS-Tom微陣列中處理青枯病菌後受AtNPR1誘導之
基因………………………………………………………………
表三、AtNPR1轉殖品系中共同受青枯病菌與其他非生物性
逆境誘導之基因………………………………………………….
附錄
附錄一、pNPR1之建構圖……………………………………………….
附錄二、常用之細菌培養基配方……………………………………….
附錄三、實驗使用之引子序列………………………………………….
附錄四、改良式 Hoagland水耕培養液……………………………….
附錄五、番茄基因轉殖所需培養基配方………………………………..
附錄六、AtNPR1轉殖品系之抗病測試結果……………………………
參考文獻 參考文獻
柯勇. (1996). 植物病理學. 國立中興大學教材.
Adams, M.D., Soares, M.B., Kerlavage, A.R., Fields, C., and Venter, J.C. (1993). Rapid cDNA sequencing (expressed sequence tags) from a directionally cloned human infant brain cDNA library. Nat Genet 4, 373-380.
Alexander, D., Goodman, R.M., Gut-Rella, M., Glascock, C., Weymann, K., Friedrich, L., Maddox, D., Ahl-Goy, P., Luntz, T., Ward, E., and et al. (1993). Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proc Natl Acad Sci U S A 90, 7327-7331.
Cao, H., Li, X., and Dong, X. (1998). Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci U S A 95, 6531-6536.
Cao, H., Bowling, S.A., Gordon, A.S., and Dong, X. (1994). Characterization of an Arabidopsis Mutant That Is Nonresponsive to Inducers of Systemic Acquired Resistance. Plant Cell 6, 1583-1592.
Cao, H., Glazebrook, J., Clarke, J.D., Volko, S., and Dong, X. (1997). The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88, 57-63.
Chen, Z., Silva, H., and Klessig, D.F. (1993). Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262, 1883-1886.
Chern, M.S., Fitzgerald, H.A., Yadav, R.C., Canlas, P.E., Dong, X., and Ronald, P.C. (2001). Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis. Plant J 27, 101-113.
Delaney, T.P., Friedrich, L., and Ryals, J.A. (1995). Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc Natl Acad Sci U S A 92, 6602-6606.
Dong, J., Chen, C., and Chen, Z. (2003). Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51, 21-37.
Dong, X. (1998). SA, JA, ethylene, and disease resistance in plants. Curr Opin Plant Biol 1, 316-323.
Dowd, C., Wilson, I.W., and McFadden, H. (2004). Gene expression profile changes in cotton root and hypocotyl tissues in response to infection with Fusarium oxysporum f. sp. vasinfectum. Mol Plant Microbe Interact 17, 654-667.
Durrant, W.E., and Dong, X. (2004). Systemic acquired resistance. Annu Rev Phytopathol 42, 185-209.
Felton, G.W., Korth, K.L., Bi, J.L., Wesley, S.V., Huhman, D.V., Mathews, M.C., Murphy, J.B., Lamb, C., and Dixon, R.A. (1999). Inverse relationship between systemic resistance of plants to microorganisms and to insect herbivory. Curr Biol 9, 317-320.
Fitzgerald, H.A., Chern, M.S., Navarre, R., and Ronald, P.C. (2004). Overexpression of (At)NPR1 in rice leads to a BTH- and environment-induced lesion-mimic/cell death phenotype. Mol Plant Microbe Interact 17, 140-151.
Genin, S., and Boucher, C. (2002). Ralstonia solanacerum: secrets of a major pathogen unveiled by analysis of its genome. Molecular Plant Pathology 3, 111-118.
Genin, S., and Boucher, C. (2004). Lessons learned from the genome analysis of ralstonia solanacearum. Annu Rev Phytopathol 42, 107-134.
Guisset, J.-L., and Vries, G.M.P.-D. (2000). The Redox States and Circadian Rhythms. Kluwer Academic Publishers.
Jach, G., Gornhardt, B., Mundy, J., Logemann, J., Pinsdorf, E., Leah, R., Schell, J., and Maas, C. (1995). Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J 8, 97-109.
JF, W., and CH, L. (2004). Colonization capacuty of Ralstonia solanacearum tomato strains differing in aggressiveness on tomato and weeds. in:allen C, Prior P and Hayward AC(eds), Bacterial Wilt: The disease and the Ralstonia solanacearum Species Complex. APS Press, St Paul (in press).
Jongedijk, E., Tigelaar, H., S.C., J., and Melchers, L.S. (1995). Synergistic activity of chitinase and B-1,3-glucanases enhances fungal resistance in transgenic tomato plants. Euphytica 85, 173-180.
Kasprzewska, A. (2003). Plant chitinases--regulation and function. Cell Mol Biol Lett 8, 809-824.
Kinkema, M., Fan, W., and Dong, X. (2000). Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12, 2339-2350.
Lam, E., Kato, N., and Lawton, M. (2001). Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411, 848-853.
Li, L., and Steffens, J.C. (2002). Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta 215, 239-247.
Li, Y., Li, T., Liu, S., Qiu, M., Han, Z., Jiang, Z., Li, R., Ying, K., Xie, Y., and Mao, Y. (2004). Systematic comparison of the fidelity of aRNA, mRNA and T-RNA on gene expression profiling using cDNA microarray. J Biotechnol 107, 19-28.
Lin., W.-C., Lu., C.-F., Wu., J.-W., Cheng., M.-L., Lin., Y.-M., Black., L., Green., S.K., Wang., J.-F., and Cheng, C.-P. (2004). Transgenic tomato plants expression the Arabidopsis NPR1 gene confer enhanced resistance to a spectrum of fungal and bacterial diseases. Transgenic research (in press).
Liu, D., Raghothama, K.G., Hasegawa, P.M., and Bressan, R.A. (1994). Osmotin overexpression in potato delays development of disease symptoms. Proc Natl Acad Sci U S A 91, 1888-1892.
Lu, R., Malcuit, I., Moffett, P., Ruiz, M.T., Peart, J., Wu, A.J., Rathjen, J.P., Bendahmane, A., Day, L., and Baulcombe, D.C. (2003). High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. Embo J 22, 5690-5699.
Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K.A., Dangl, J.L., and Dietrich, R.A. (2000). The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 26, 403-410.
Mengiste, T., Chen, X., Salmeron, J., and Dietrich, R. (2003). The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell 15, 2551-2565.
Mithofer, A., Schulze, B., and Boland, W. (2004). Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Lett 566, 1-5.
Mou, Z., Fan, W., and Dong, X. (2003). Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113, 935-944.
Pieterse, C.M.J., Ton, J., and Loon, L.C.V. (2001). Cross-talk between plant defense signalling pathways:boost or burden. AgBiotechNet 3, 1-8.
Ryals, J., Lawton, K.A., Delaney, T.P., Friedrich, L., Kessmann, H., Neuenschwander, U., Uknes, S., Vernooij, B., and Weymann, K. (1995). Signal transduction in systemic acquired resistance. Proc Natl Acad Sci U S A 92, 4202-4205.
Ryals, J., Weymann, K., Lawton, K., Friedrich, L., Ellis, D., Steiner, H.Y., Johnson, J., Delaney, T.P., Jesse, T., Vos, P., and Uknes, S. (1997). The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor I kappa B. Plant Cell 9, 425-439.
Ryals, J.A., Neuenschwander, U.H., Willits, M.G., Molina, A., Steiner, H.Y., and Hunt, M.D. (1996). Systemic Acquired Resistance. Plant Cell 8, 1809-1819.
Schaller, F., Biesgen, C., Mussig, C., Altmann, T., and Weiler, E.W. (2000). 12-Oxophytodienoate reductase 3 (OPR3) is the isoenzyme involved in jasmonate biosynthesis. Planta 210, 979-984.
Schenk, P.M., Kazan, K., Wilson, I., Anderson, J.P., Richmond, T., Somerville, S.C., and Manners, J.M. (2000). Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci U S A 97, 11655-11660.
Schweizer, P., Christoffel, A., and Dudler, R. (1999). Transient expression of members of the germin-like gene family in epidermal cells of wheat confers disease resistance. Plant J 20, 541-552.
Tornero, P., Gadea, J., Conejero, V., and Vera, P. (1997). Two PR-1 genes from tomato are differentially regulated and reveal a novel mode of expression for a pathogenesis-related gene during the hypersensitive response and development. Mol Plant Microbe Interact 10, 624-634.
Uknes, S., Mauch-Mani, B., Moyer, M., Potter, S., Williams, S., Dincher, S., Chandler, D., Slusarenko, A., Ward, E., and Ryals, J. (1992). Acquired resistance in Arabidopsis. Plant Cell 4, 645-656.
van Wees, S.C., de Swart, E.A., van Pelt, J.A., van Loon, L.C., and Pieterse, C.M. (2000). Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci U S A 97, 8711-8716.
Verhagen, B.W., Glazebrook, J., Zhu, T., Chang, H.S., van Loon, L.C., and Pieterse, C.M. (2004). The transcriptome of rhizobacteria-induced systemic resistance in arabidopsis. Mol Plant Microbe Interact 17, 895-908.
Vierheilig, H., Alt, M., and Boller, T. (1995). Colonization of transgenic tobacco constitutively expression pathogenesis-related proteins by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Applied and Enviroment Microbiology, 3031-3034.
Wan., J., Dunnung., F.M., and F.Bent, A. (2002). Probing plant-pathogen interactions and downstream defense signaling using DNA microarays. Funct Integr Genomucs 2, 259-273.
Wang, J.F., Olivier, J., Thoquet, P., Mangin, B., Sauviac, L., and Grimsley, N.H. (2000). Resistance of tomato line Hawaii7996 to Ralstonia solanacearum Pss4 in Taiwan is controlled mainly by a major strain-specific locus. Mol Plant Microbe Interact 13, 6-13.
Wang, W., Vinocur, B., Shoseyov, O., and Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9, 244-252.
Whitham, S., Dinesh-Kumar, S.P., Choi, D., Hehl, R., Corr, C., and Baker, B. (1994). The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78, 1101-1115.
Wong, C.E., Carson, R.A., and Carr, J.P. (2002). Chemically induced virus resistance in Arabidopsis thaliana is independent of pathogenesis-related protein expression and the NPR1 gene. Mol Plant Microbe Interact 15, 75-81.
Y.H.Lee, I.S.Yoon, S.C.Suh, and H.I.Kim. (2002). Enhanced disease resistance in transgenic cabbage and tobacco expressing a glucose oxidase gene from Aspergillus niger. Plant Cell Rep 20.
Yu, D., Chen, C., and Chen, Z. (2001). Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell 13, 1527-1540.
Zhou, J.M., Trifa, Y., Silva, H., Pontier, D., Lam, E., Shah, J., and Klessig, D.F. (2000). NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol Plant Microbe Interact 13, 191-202.
指導教授 詹明才、黃雪莉
(Ming-Tsair Chan、Shir-Ly Huang)
審核日期 2004-10-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明