博碩士論文 91226036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:18.119.136.235
姓名 周虹宇(Hung-Yu Chou)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 生物晶片螢光檢測之光源模型探討
(Study of Light Source Model for Fluorescence Detection in Biochip)
相關論文
★ 新型光電生化感測器之分析與研究★ 薄膜電晶體液晶顯示器中視角色偏之優化補償方法
★ 特定色度背光模組零組件之光學特性評估★ 電子紙增亮分析與模擬設計
★ 介電電濕式數位微流體驅動系統之探討★ 發光二極體照明系統之色彩特性優化設計
★ 以EWOD為基礎的長鏈高分子原位合成器★ 色盲量化測試系統之研究
★ 可調式自然日光模擬光源之製作★ 演色性評估之相關性指標
★ 亞精胺影響下DNA構形與DNA碎片分佈之研究★ 生物晶片之螢光光學檢測
★ 生物晶片螢光分析之微光學模組★ 光學式生化反應即時偵測系統
★ 微液滴驅動之研究與探討★ LED光源新式應用之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,由於生物技術突飛猛進的發展、再加上微機電系統技術與封裝技術不斷地持續的發展並漸趨成熟,因此跨領域整合式實驗室型生物晶片(Lab on a chip)的研究也隨之興起,並且已成為新世紀以來最為熱門的研究課題之一。
目前應用在生物晶片上的訊號偵測方法有許多種,例如:螢光檢測法、反射率量測法、電流檢測法和電位量測法等等,我們主要探討的是螢光檢測法,利用漸逝波(evanescent wave)的激發方式激發螢光,進而利用微光學元件調制螢光光源,而促成整個生物晶片檢測系統。
本文中,我們從系統基本的架構,包括經由不同的入射光所造成的漸逝波模擬和螢光初始光源模型的建立,一直到建立考慮散射效應的螢光光源模型以及初步的微小化收光元件之設計,而完整地建立出整個生物晶片檢測系統的雛型。未來,我們將可進一步更有效率地改進在微光學件上的設計,以完整建立整個生物晶片檢測系統。
摘要(英) Recently, according to the great progress in biotechnology and the miniaturization techniques in engineering, the development on the technology of lab on a chip becomes one of the most important subjects for the multi-discipline integration.
There are many signal detection methods applied on the biochip, such as the fluorescence detection method、the reflectance detection method、the conductimetric detection method and the potentiometric detection method etc. Here, we focus on the fluorescence detection method and utilize the evanescent wave to excite the fluorescence, then use micro-optic elements to modulate the fluorescent light source and promote the detective system of the biochip.
In this thesis, it has been established the fundamental construction of the miniature detection system including evanescent wave arising from different types of incident light and the initial fluorescence emission model to the fluorescence emission considered scattering effect and the preliminary work of lens design. In the future, it will be further improved on the work of micro-optical elements, including micro-grating that combines with the miniature detection system. Finally, we hope to build up the complete miniature detection system.
關鍵字(中) ★ 螢光檢測
★ 生物晶片
關鍵字(英) ★ Lab-on-a-chip
★ fluorescence
論文目次 Chapter 1 Introduction to Lab-on-a-chip..............1
1-1 Introduction.....................................1
1-2 Laser Induced Fluorescence(LIF)..................6
1-3 Detection System Miniaturization.................8
Chapter 2 Properties of Fluorescence.................13
2-1 Introduction.....................................13
2-2 The Processes of Fluorescence Emission...........19
2-3 Absorption and Emission spectra..................19
2-4 Intensity of Fluorescence Emission...............21
2-5 Summary..........................................24
Chapter 3 Design of Miniature Detection System.......25
3-1 Total Internal Reflection(TIR) Configuration.....25
3-2 Evanescent Wave Excitation.......................27
3-3 Laser Induced Fluorescence Emission..............33
3-4 Light Scattering.................................35
3-5 Summary..........................................38
Chapter 4 Simulation Results.........................40
4-1 Evanescent Wave Excitation.......................40
4-2 Laser Induced Fluorescent Light..................42
4-3 Light Scattering.................................47
4-4 Micro-optic System...............................54
4-5 Summary..........................................70
Chapter 5 Future Work and Conclusion.................72
Reference............................................74
參考文獻 [1] S.C. Terry, G.H Jerman, J.B. Angell,”A gas chromatographic air analyzer fabricated on a silicon wafer”, IEEE Trans. Electron Devices. ED-26, 12, 1880-1886, 1979.
[2] M. Schena, “DNA Microarrays: A Practical Approach”, Oxford University Press, 2000.
[3] D.J. Harrison, A. Manz, Z. Fan, H. Lüdi and H.M. Widmer, Anal. Chem 64, 1926 (1992).
[4] D.J. Harrison, K. Fluri, K. Seiler, Z. Fan, C.S. Effenhauser and A. Manz, Science 261, 895 (1993).
[5] K. Seiler, D.J. Harrison and A. Manz, Anal. Chem. 65, 1481 (1993).
[6] C.S. Effenhauser, A. Manz and H.M. Widmer, Anal. Chem. 65, 2637 (1993).
[7] S.C. Jacobson, A.W. Moore and J.M. Ramsey, Anal. Chem. 67, 2059, 1995.
[8] M.U. Kopp, A.J. de Mello, and A. Manz, Science, 280, 1046 (1998).
[9] R. P. Oda, M. A. Strausbauch, A. F. R. Huhmer, N. Borson, S. R. Jurrens, J. Craighead, P. J. Wettstein, B. Eckloff, B. Kline and J. P. Landers, Anal.Chem., 70, 4361–4368 (1998).
[10] E. T. Lagally, P. C. Simpson and R. A. Mathies, Sens. Actuators B, 63, 138–146 (2000).
[11] J. Khandurina, . E. McKnight, S. C. Jacobson, L. C. Waters, R. S. Foote and J. M. Ramsey, Anal. Chem., 72, 2995–3000 (2000).
[12] Biospice: DNA microarray(http://biospice.lbl.gov/people/JKeasling/text.html)
[13] Science beat of BERKELEY LAB: microfluidic-chip (http://www.lbl.gov/Science-Articles/Archive/MSD-microfluidic-chip.html)
[14] Manz, A., Graber, N. Widmer, H.M., Miniaturized total chemical analyses systems. A novel concept for chemical sensing.”, Sens.Actuators, B Chem., B1(1-6), 244, 1990.
[15] M.A. Schwarz and P.C. Hauser, “Recent developments in detection methods for microfabricated analytical devices”, Lab on a Chip, 1, 1-6 (2001)
[16] Micronit: CE chip(http://www.micronit.nl/index.php? url=http://www.micronit.com/products/capillaryelectrophoresis.html)
[17] Astbury center: SPR (http://www.astbury.leeds.ac.uk/ Facil/spr.htm)
[18] AlgaewatchTM: Fluorometer
(http://www.gatgmbh.com/deutsch/produkte/fluorometrie/algaewatch/algaewatch_deu.htm)
[19] Jesús Cervantes-Martínez, Ricardo Flores-Hernández, Benjamín Rodríguez-Garay, and Fernando Santacruz-Ruvalcaba, “Detection of bacterial infection of agave plants by laser-induced fluorescence”, APPLIED OPTICS, Vol. 41, No.13, p.2541-2545, 1 MAY 2002.
[20] Yasunori Saito, Mitsuyoshi Kanoh, Ken-ichiro Hatake, Takuya D. Kawahara, and Akio Nomura,” Investigation of laser-induced fluorescence of several natural leaves for application to lidar vegetation monitoring”, APPLIED OPTICS, Vol.37, No.3, p.431-437, 20 January 1998.
[21] Rand M. Wadkins, Joel P. Golden, Leo M. Pritsiolas, and Frances S. Ligler,“Detection of multiple toxic agents using a planar array immunosensor”, Biosensors & Bioelectronics, 13, No.3-4, 407-415 (1998).
[22] Chris A. Rowe-Taitt, Joel P. Golden, Mark J. Feldstein, John J. Cras, Karen E. Hoffman, Frances S. Ligler, “Array biosensor for detection of biohazards”, Biosensors & Bioelectronics, 14, 785–794 (2000).
[23] Mark J. Feldstein, Joel P. Golden, Chris A. Rowe, Brian D. MacCraith, and Frances S. Ligler, “Array Biosensor: Optical and Fluidics Systems”, Journal of Biomedical Microdevices 1:2, 139-153 (1999).
[24] Chris A.Rowe, Stephanie B. Scruggs, Mark J. Feldstein, Joel P. Golden, and Frances S. Ligler, “An Array lmmunosensor for Simultaneous Detection of Clinical Analytes”, Anal. Chem., 71, 433–439 (1999).
[25] H.P. Herzig, Micro-optics: Elements, systems and applications, Taylor & Francis, London 1997.
[26] S. Sinzinger and J. Jahns, Microoptics, Wiley-VCH, Singapore, 1999.
[27] Hong-Yuh Chou, Tsung-Hsung Yang, “Micro-optical System for Lab-on-a-Chip”, 科儀新知第二十五卷第六期, 22-29.
[28] J. Wilson and J. Hawkes, Optoelectronics: an introduction, p131-133, Prentice Hall, Third edition, 1998.
[29] Fluorescence imaging: principles and methods, Technical manual, Amersham pharmacia biotech.
[30] Haitinger, M., Fluoreszenz-Mikroskopie, Akademische Varlagsgesellschaft, Geest und Portig K.-G., Leipzig (1959). (http://www.olympusmicro.com/primer/lightandcolor/fluorointroduction.html)
[31] Olympus: fluorescence (http://www.olympusmicro.com/primer/lightandcolor/fluorointroduction.html)
[32] F.W.D ROST, ”Fluorescence microscopy”, Vol.1, p.1, CAMBRIDGE UNIVERSITY PRESS, 1992
[33] CHROM BIOS Molecular Cytogenetics: epi-fluorescence microscope (http://www.chrombios.com/WebFinals/AboutFISH/Microscope.html)
[34] University of lllinois at Chicago: confocal fluorescence microscope (http://icarus.cc.uic.edu/~swu5/Week%2015.htm)
[35] Olympus: fluorescence
(http://www.olympusmicro.com/primer/techniques/fluorescence/fluorescenceintro.html)
[36] Amersham Biosciences: Fluorescence (http://www4.amershambiosciences.com)
[37] The physics classroom: Total Internal Reflection (http://www.glenbrook.k12.il.us/gbssci/phys/Class/refrn/u14l3b.html)
[38] Olympus: fluorescence
(http://www.olympusmicro.com/primer/techniques/fluorescence/tirf/tirfintro.html)
[39] Hung-Yu Chou, Tsung-Hsun Yang, Jenq-Yang Chang, “Evanescent Gaussian and Bessel Beams for Biochips”, Proceedings of OPT 2003, Vol.Ⅱ, FH2-2, 555-557, 2003.
[40] 邱宗凱,錢正浩,連偉男,林奇宏, “全反射螢光顯微術於生物物理的應用”, p436-442, 物理雙月刊(廿四卷三期)2001年6月.
[41] Fadi I. Baida, Daniel Van Labeke and Jean-Marie Vigoureux, “Numerical study of the displacement of a three dimensional Gaussian beam transmitted at total internal reflection. Near-field applications”, J. Opt. Soc. Am. A, Vol. 17, No. 5, 858-866 (2000).
[42] Jean-Christophe Roulet,“Microoptical System for Fluorescence Detection in Chemical Microsystem”, Chapter 1, institut de microtechnique, Université de Neuchâtel, 2001.
[43] George G.Guilbault, PRACTICAL FLUORESCENCE, 2nd edition, Marcel Dekker, 1990.
[44] Ashutosh Sharma and Stephen G. Schulman, “Introduction to Fluorescence Spectroscopy”, New York, J. Wiley, 1999.
[45] Paras N. Prasad, INTRODUCTION TO BIOPHOTONICS, Chapter 6, A JOHN WILEY & SONS, INC., PUBLICATION, 2003.
[46] Niemz, M. H., Laser–Tissue Interactions, Springer-Verlag, Berlin, 1996.
[47] Van de Hulst, H. C., Light Scattering by Small Particles, Dover, New York, 1957.
[48] Bohern, P. W. and S. C. Hill, Light Scattering by Particles:Computational Methods, World Scientific Publishing, Singapore, 1983.
[49] Eugene Hecht, OPTICS, p.92, Addison Wesley, four edition, 2002.
[50] Fluorescence imaging: principles and methods, Technical manual, Amersham pharmacia biotech.
[51] Almazoptics: KV optical grade fused quartz
(http://www.almazoptics.com/KV.htm)
[52] Mathews, Van Holde, Ahern, Biochemistry third edition, p94.
[53] Badri P. Maliwal, Jozef Kusba and Joseph R. Lakowicz “Fluorescence Energy Transfer in One Dimension: Frequency-Domain Fluorescence Study of DNA-Fluorophore Complexes”, Biopolymers, Vol. 35, 245-255 (1995).
[54] Olympus: beamsplitter
(http://www.olympusmicro.com/primer/lightandcolor/prismsandbeamsplitters.html)
[55] WataruWatanabe, Daisuke Kuroda, and Kazuyoshi Itoh, “Fabrication of Fresnel zone plate embedded in silica glass by femtosecond laser pulses”, OPTICS EXPRESS, p.978-983, Vol.10, No.19, 23 September 2002.
[56] Masamitsu Haruna, Masanobu Takahashi, Kohji Wakahayashi, and Hiroshi Nishihara, “Laser beam lithographed micro-Fresnel lenses”, APPLIED OPTICS, p.5120-5126, Vol.29, No.34, 1 December 1990.
[57] Teruhiro Shiono, Kentaro Setsune, Osamu Yamazaki, and Kiyotaka Wasa,“Rectangurlar-apertured micro-Fresnel lens arrays fabricated by electron-beam lithography”, APPLIED OPTICS, p.587-591, Vol.26, No.3, 1 February 1987.
[58] Hyperphysics: fresnel lens (http://hyperphysics.phy-astr.gsu.edu/hbase/geoopt/fresnellens.html)
指導教授 楊宗勳(Tsung-Hsun Yang) 審核日期 2004-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明