博碩士論文 91246016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:52.15.214.42
姓名 許哲隆(Che-Lung Hsu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 矽基波導模態共振元件與應用之研究
(Research on Silicon-Based Guided-Mode Resonance Devices and Applications)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ 導波共振光學元件應用於生物感測器之研究
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 低溫成長鍺薄膜於單晶矽基板上之研究
★ 矽鍺薄膜及其應用於光偵測器之研製★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器
★ 整合慣性感測元件之導波矽基光學平台研究★ 矽基光偵測器研製與整合於光學波導系統
★ 光學滑鼠用之光學元件設計★ 高效率口袋型LED 投影機之研究
★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究★ 極化繞射光學元件在高密度光學讀取頭上之應用研究
★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究★ 經氣氛處理之鈦酸鋇單晶其光折變性質及電荷移轉與波長的關係
★ 在不同溫度時氣氛處理鈦酸鋇單晶性質之比較★ 摻銠鈦酸鋇單晶的氧化還原與光折變性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,由於微製造技術的成熟,使得傳統光學元件的尺寸成功的微小化,並促成了微小化光學的發展。同樣的,有關奈米尺度下的光學元件的相關研究也促成了奈米光學的快速發展,並衍生出許多以往無法利用微光學實現的應用諸如高階顯微技術、高容量密度資訊儲存技術、光子操控技術、以及探測技術。然而,尺寸過於微小的奈米光學元件在製作上的困難度卻導致了在實際應用面上受到不小的限制。相較於奈米光學,次波長光學元件由於其較容易實現的結構,以及諸多微光學元件所無法實現的特性,像是抗反射面結構、人造介質、極化相關元件以及共振濾波器等等應用而引發了大量的興趣。
在本論文中,我們利用結合了次波長光柵以及波導特性所構成之波導共振模態元件來發展包括光學濾波器、安全識別標章、以及光學偵檢器之光學元件。由於矽基光學元件具有可與其他微光學元件做積體化整合之潛力,我們特別利用矽基材料來發展波導共振模態元件。我們發展的波導共振模態元件包含以矽製作成的共振光柵結構以及在懸浮的氮化矽薄膜上製做的共振結構。
首先,我們利用於石英基板上發展利用矽製作的共振光柵元件。我們利用該結構設計具有不同頻寬之穿透式帶止濾波器,並於紅外光波段得到超過150奈米頻寬與羅倫茲譜線的截止頻帶。為了要改善譜線的形狀,我們利用非對稱的二階光柵結構來使得截止頻帶譜線得以平坦化。除了帶止濾波器,我們也提出利用非對稱的二階光柵結構設計出具有200奈米平坦化帶通頻譜之穿透式帶通濾波器,該結構相較於傳統光學薄膜濾波器的多層結構具有更簡單的結構。我們更進一步的提出可於單一矽晶片上實現的非平面式光學濾波器,該單石矽光學濾波器可應用於矽微光學桌上。由於矽本身的高折射率所導致的強調制特性,利用矽發展出的波導共振模態元件對角度具有相當高的容忍度,在實際應用方面可以避免一般波導共振模態元件所要求的精確的角度校準要求。
利用矽製作的光學元件其應用僅限於紅外光的波段範圍。對於可見光頻譜範圍的應用,氮化矽由於對可見光至紅外波段範圍皆具有高穿透的特性,因此,氮化矽光學元件顯然較矽光學元件具有更多的優點。有鑑於此,為了發展完全以矽基材料製作的光學元件,我們發展出一在懸浮於矽基板上之氮化矽薄膜製作之波導共振模態元件以作為窄頻之穿透式帶止濾波器。我們所提出的這個元件具有結構簡易、效率高、以及具有可與其他元件積體化構成一微小化系統晶片的潛力。其中,利用此懸浮氮化矽薄膜之特殊共振結構所達到頻譜改良之目的包括抗反射光柵的利用、頻譜改良膜層,以及利用串接式結構使得頻譜平坦化的方法皆揭示於其中。
除了光學濾波器的應用外,我們也利用氮化矽薄膜之共振結構發展出安全識別標記以及生化光學偵檢器之應用。首先,我們利用氮化矽之波導模態共振元件展示了在一般非極化之自然光的照射下,具有防偽功能的奈米標章。該元件由於氮化矽本身具有較高折射率所導致的強調制特性,使得元件具有大角度的容忍度。以人眼辨識該標章,其角度容忍度在正射及正負五度的角度內。接著,我們與中央大學光電所楊宗勳教授所主持的微光機電實驗室合作研究,發展出可利用波導模態共振效應檢測生物脫氧核糖核酸雜交過程的實驗方法。當生物分子附著在波導模態共振結構表面時,由於相位差的改變使得共振波長產生飄移的現象。基於共振效應本身所具有的高敏感度,我們發現共振波長的飄移與脫氧核糖核酸雜交過程之間的關係可以成功的被觀測到。
摘要(英) During the past decades, the matured micro fabrication technology has
successfully miniaturized the dimensions of optical elements which results in the
development of micro-optics. As well, the research of nano-scaled optical elements
has also promoted the rapid development of nano-optics in the recent time owing to
the wide range of possible applications such as advanced microscopy, high-density
data storage, photon manipulation, and even probing techniques that can not achieve
in micro-optics. However, the extremely tiny size of nano-optical elements suffers
from the strict requirement in fabrication so that the practical application of
nano-optics is restricted in a certain degree. Compared with nano-optics, the
subwavelength optical elements have raised substantial interests because of their
feasible structure and versatile capabilities which should not be approached with
micro-optics and make them possessing numerous useful functions such as
antireflection surface, artificial dielectrics, polarization sensitive elements, and
resonant filters.
In this thesis, the guide-mode resonance (GMR) devices which consist of
subwavelength diffraction grating and waveguide are developed to possess the
functions of optical filters, security recognition, and biosensor. Particularly, we
developed the GMR devices with silicon-based materials since that may be potential
to integrate with other silicon micro-optical elements. The different resonant
structures are constructed such as silicon grating and free-standing silicon-nitride
(SiNx) membrane.
For the GMR devices developed with silicon grating, first, the quartz is used as the substrate to excite the resonance. We designed the transmission notch filters of
flexible bandwidths in the infrared region and then experimentally achieved a
wide-bandwidth notch filter of over 150 nm stopband and a band shape of Lorentzian
type. To improve the line shape, we utilized the asymmetric binary grating profiles to
flatten the stopband effectively. Besides the notch filter, we also proposed a
transmission bandpass filter of flattop and wide bandwidth of 200 nm using the
asymmetric binary grating profiles which is much less complex compared with the
conventional multilayer thin films structure. Furthermore, we proposed an
out-of-plane optical filter on a single silicon chip which can be used as a monolithic
optical filter on a silicon micro-optical bench. Owing to the strong modulation, i.e.
large contrast of refractive index, offered by the silicon grating, the presented GMR
devices constructed of silicon are shown to provide with high angular immunity that
can significantly decrease the strict demands of precise alignment in GMR device.
The use of silicon for optical elements is profitable only in the infrared region.
For applications in the visible region, the use of SiNx obviously has more advantages
owing to its high transparency in both visible in infrared regions. In addition, to
develop the fully silicon-based element, we constructed the GMR devices in a
free-standing SiNx membrane suspended on a silicon substrate and used as a
transmission notch filter of narrow bandwidth. The proposed structures possess
advantages of simple structure, high efficiency, and potential in integrating with other
components into a micro-system chip. The methods for tailoring the resonance
performance in the unique GMR structure including antireflection grating,
spectrum-modifying layer, and cascaded arrangement for stopband flattening are
presented.
Besides the optical filters, the novel applications of GMR device including security recognition and bio sensing are further developed. First, the SiNx GMR
membrane is experimentally demonstrated as an authentication label upon
illumination with the unpolarized white light with wide angular tolerances due to the
high refractive index of SiNx facilitates the proposed filters possess strongly
modulated gratings and immunity for the high angular deviation. The measured
reflection resonance has an angular tolerance up to ±5° under normal incidence for the
visible region for recognition by human eyes. Afterwards, collaborating with the
MOEMS laboratory leading by Prof. Tsung-Hsun Yang, the method for detecting
DNA hybridization by utilizing the GMR effect is also proposed by which the
resonance wavelength is shifted due to phase change of resonant wave induced from
the surface attachment of molecules. Owing to the high sensitivity of resonance effect,
the correlations of resonance wavelengths shifted with the length of ssDNA of the
hybridizations are demonstrated to successfully detecting the hybridization process.
關鍵字(中) ★ 平面波導
★ 次波長光柵
★ 波導模態共振
★ 生物感測器
★ 濾波器
★ 安全辨識
關鍵字(英) ★ planar waveguide
★ subwavelength grating
★ guided-mode resonance
★ security recognition
★ biosensor
★ filter
論文目次 Abstracts………………………………………………………………I
Abstracts (in Chinese)……………………………………………IV
Acknowledgement……………………………………………………VI
Contents……………………………………………………………VIII
List of Figures……………………………………………………XI
List of Tables………………………………………………………XVI
Chapter 1 Introduction……………………………………………1
Chapter 2 Principles of Guided-Mode Resonance Effect and Its Properties………………………………………………………13
2.1 Introduction……………………………………………………13
2.2 Rigorous Coupled-Wave Theory of Resonant Grating……14
2.3 Weakly Modulated Resonant Grating Structures…………17
2.4 Analysis of Resonant Grating Waveguide Structure……21
2.5 Properties of Guided-Mode Resonance Effect……………26
2.5.1 Resonance locations………………………………………26
2.5.2 Linewidth dependence………………………………………29
2.5.3 Incident angles………………………………………………34
2.5.4 Grating profile………………………………………………35
2.5.5 Grating period………………………………………………36
2.5.6 Waveguide thickness…………………………………………38
2.5.7 Waveguide refractive index………………………………39
2.5.8 Material loss…………………………………………………39
2.5.9 Resonance line shapes………………………………………41
2.5.10 Off-resonance sideband performance……………………42
2.5.11 Beam divergence……………………………………………44
2.6 Summary……………………………………………………………46
Chapter 3 Guided-Mode Resonance Filters Constructed of Subwavelength Silicon Gratings…………………………………………………………47
3.1 Introduction……………………………………………………47
3.2 Guide-Mode Resonance Filter Notch Filter………………49
3.2.1 Design of GMR filters constructed of silicon grating on quartz substrate…………………………………………………49
3.2.2 Fabrication of silicon notch filter……………………54
3.2.3 Measurement results of wide-bandwidth notch filter.55
3.3 Flattened Broadband Notch Filters Associated with Asymmetric Strongly Modulated Gratings………………………57
3.3.1 Nondegenerate resonance modes in asymmetric grating structure……………………………………………………………59
3.3.2 Fabrication results…………………………………………61
3.3.3 Measurement results of the flattened stopband………62
3.3.4 Angular dependence…………………………………………64
3.3.5 Analysis of band diagram in strongly modulated GMR structures…………………………………………………………65
3.4 Transmission Bandpass Filter of Wide and Flattop Passband………………………………………………………………69
3.3.1 Controlling of the stopbands……………………………72
3.3.2 Transmission filter of ultra-broad bandwidth and flattop passband……………………………………………………74
3.3.3 Analysis of angular tolerance……………………………75
3.5 Filter on Optical Bench………………………………………76
3.6 Summary……………………………………………………………84
Chapter 4 Guided-Mode Resonance Devices Constructed of Silicon–Based Membrane Structures……………………………86
4.1 Introduction……………………………………………………86
4.2 Narrow-Bandwidth Guided-Mode Resonance Filter…………91
4.2.1 Resonance excitation………………………………………91
4.2.2 Device fabrication by using silicon bulk micromachining technology…………………………………………94
4.2.3 Measurement results…………………………………………97
4.3 Sideband Modification………………………………………100
4.3.1 Sideband improvement by using antireflection grating………………………………………………………………100
4.3.2 Sideband improvement with spectrum-modifying layer…………104
4.4 Cascaded GMR Structures for Band Flattening…………111
4.5 Applications……………………………………………………112
4.7.1 Authentication label………………………………………114
4.7.2 GMR biosensor………………………………………………120
4.6 Summary…………………………………………………………125
Chapter 5 Conclusion……………………………………………………………127
References……………………………………………………………131
Publication Lists…………………………………………………142
參考文獻 [1] L. B. Mashev and E. G. Loewen, “Anomalies of all-dielectric multilayer coated reflection gratings as a function of groove profile: an experimental study,” Appl. Opt., vol. 27, pp. 31-32, 1988.
[2] S. T. Peng, H. L. Bertoni, and T. Tamir, “Analysis of thin-film structures with rectangular profiles,” Opt. Commun., vol. 10, pp. 91-94, 1974.
[3] M. Nevière, R. Petit, and M. Cadihac, “About the theory of optical grating coupler-waveguide system,” Opt. Commun., vol. 8, pp. 113-117, 1993.
[4] S. T. Peng, T. Tamir, and H. L. Bertoni, “Theory of periodic waveguides,” IEEE Trans. on Microwave Theory and Techniques, vol. MTT-23, pp. 123-133, 1975.
[5] L. Mashev and E. Popov, “Diffraction anomalies of dielectric coated gratings,” Opt. Commun, vol. 51, pp. 131-136, 1984.
[6] E. Popov and L. Mashev, “Diffraction anomalies of coated dielectric gratings in conical diffraction mounting,” Opt. Commun., vol. 59, pp. 323-325, 1986.
[7] L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun., vol. 55, pp. 377-380, 1985.
[8] R. W. Wood, “Remarkable spectrum from a diffraction grating,” Philos. Mag., vol. 4, pp. 396-402, 1902.
[9] S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, pp. 466-475, 1956.
[10] E. Popv, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta., vol. 33, pp. 607-619, 1986.
[11] L. F. DeSandre and J. M. Elson, “Extinction-theorem analysis of diffraction anomalies in overcoated gratings,” J. Opt. Soc. Am. A, vol. 8, no 5, pp. 763-777, 1991.
[12] T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. SPIE, vol. 73, no. 5, pp. 894-937, 1985.
[13] R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev., vol. 48, pp. 928-936, Dec. 1935.
[14] A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt., vol. 10, pp. 1275-1297, 1965.
[15] S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A, vol. 18, pp. 1470-1475, 1990.
[16] Dongho Shin, “Resonance properties of periodic waveguides and their applications,” Ph.D. dissertation, the University of Texas at Arlington, Aug. 1999.
[17] Sorin Tibuleac, “Guided-mode resonance reflection and transmission filters in the optical and microwave spectral ranges,” Ph.D. dissertation, the University of Texas at Arlington, Dec. 2001.
[18] W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phy. Rev. B, vol. 54, pp. 6227-6244, 1996.
[19] H. Raither, “Surface plasmons on smooth and rough surfaces and on gratings,” Springer Verlag, Berlin, 1988.
[20] R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett., vol. 61, pp. 1022-1024, 1992.
[21] S. T. Thurman and G. M. Morris, “Controlling the spectral response in guided-mode resonance filter design,” Appl. Opt., vol. 42, no. 16, pp. 3225-3233, 2003.
[22] A. Sharon, D. Rosenblatt, and A. A. Friesem, “Resonant grating-waveguide structures for visible and near-infrared radiation,” J. Opt. Soc. Am. A, vol. 14, no. 11, pp. 2985-2993, 1997.
[23] D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, “Thin-film optical filters with diffractive elements and waveguides,” Opt. Eng., vol. 37, no. 9, pp. 2634-2646, 1998.
[24] S. S. Wang and R. Magnusson, Theory and applications of guided-mode resonance filters,” Appl. Opt., vol. 32, no. 14, pp.2606-2613, 1993.
[25] D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron., vol. 33, no. 11, pp. 2038-2059, 1997.
[26] J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, and D. L. Brundrett, “Guided-mode resonant subwavelength gratings: effect of finite beams and finite gratings,” J. Opt. Soc. Am. A, vol. 18, no. 8, pp. 1912-1928, 2001.
[27] S. Glasberg, A. Sharon, D. Rosenblatt, and A. A. Friesem, “Spectral shifts and line-shapes asymmetries in the resonant response of grating waveguide structures,” Opt. Commum., vol. 145, pp. 291-299, 1998.
[28] R. Magnusson, S. S. Wang, T. D. Black, and A. Sohn, “Resonance properties of dielectric waveguide gratings: theory and experiments at 4-18GHz,” IEEE Trans. on Antennas and Propagation, vol. 42, no. 4, pp. 567-569, 1994.
[29] S. Tibuleac and R. Magnusson, “Narrow-linewidth bandpass filter with diffractive thin-film layers,” Opt. Lett., vol. 26, pp. 584-586, 2001.
[30] R. Magnusson, D. Shin, and Z. S. Liu, “Guided-mode resonance Brewster filter,” Opt. Lett., vol. 23, no. 8, pp. 612-614, 1998.
[31] S. S. Wang and R. Magnusson, “Design of waveguide-grating filters with symmetrical line shapes and low sideband,” Opt. Lett., vol. 19, pp. 919-921, 1994.
[32] A. Mizutani, H. Kikuta, K. Nakajima, and K. Iwata, “Nonpolarizing guided-mode resonant grating filter for oblique incidence,” J. Opt. Soc. Am. A, vol. 18, no. 6, pp. 1261-1266, 2001.
[33] Z. Hegedus, R. Netterfield, “Low sideband guided-mode resonance filter,” Appl. Opt., vol. 39, pp. 1469-1473, 2000.
[34] Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, R. Magnusson, “High-efficiency guided-mode resonance filter,” Opt. Lett., vol. 23, pp. 1556-1558, 1998.
[35] R. J. Stockermans and P. L. Rochon, “Narrow-band resonant grating waveguide filters constructed with azobenzene polymers,” Appl. Opt., vol. 38, pp. 3714-3719, 1999.
[36] A. Sharon, D. Rosenblatt and A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett., vol. 69, pp. 4154-4156, 1996.
[37] S. Boonruang, A. Greenwell, and M. G. Moharam, “Multiline two-dimensional guided-mode resonant filters,” Appl. Opt., vol. 45, no. 22, pp.5740-5747, 2006.
[38] D. Lacour, J. P. Plumey, G. Granet, and A. M. Ravaud, “Resonant waveguide gratings: analysis of polarization independent filtering,” Optical and Quantum Electron., vol. 33, pp. 451-470, 2001.
[39] A.-L. Fehrembach and A. Sentenac, “Study of waveguide grating eigenmodes for unpolarized filtering applications,” J. Opt. Soc. Am. A, vol. 20, no. 3, pp. 481-488, 2003.
[40] S. Peng and G. M. Morris, “Resonant scattering from two-dimensional gratings,” J. Opt. Soc. Am. A, vol. 13, no. 5, pp. 993-1005, 1996.
[41] D. Lacour, G. Granet, and J.-P. Plumey, “Polarization independence of a one-dimensional grating in conical mounting,” J. Opt. Soc. Am. A, vol. 20, no. 8, pp. 1546-1552, 2003.
[42] G. Niederer, H. P. Herzig, J. Shamir, H. Thiele, M. Schnieper, and C. Zschokke, “Tunable, oblique incidence resonant grating filter for telecommunications, ” Appl. Opt., vol. 43, no. 8, pp. 1683-1694, 2004.
[43] G. Niederer, W. nakagawa, and H. P. Herzig, “Design and characterization of a tunable polarization-independent resonant grating filter,” Opt. Exp., vol. 13, no. 6, pp. 2196-2200, 2005.
[44] T. Clausnitzer, A. V. Tishchenko, E.-B. Kley, H.-J. Fuchs, D. Schelle, O. Parriaux, and U. Kroll, “Narrowband, polarization-independent free-space wave notch filter, ” J. Opt. Soc. Am. A, vol. 22, no. 12, pp. 2799-2803, 2005.
[45] A. L. Fehrembach, D. Maystre, and A. Sentenac, “Filtering of unpolarized light by gratings,” J. Opt. A: Pure Appl. Opt., vol. 4, pp. S88-S94, 2002.
[46] R. Magnusson and S. S. Wang, “Optical filter elements based on waveguide gratings,” in Holographics International ’92, Y. N. Denisyuk and F. Wyrowski, eds., Proc. SPIE 1732, pp. 7-18, 1993.
[47] S. Tibuleac, P. P. Young, R. Magnusson and T. R. Holzheimer, “Experimental verification of waveguide-mode resonant transmission filters,” IEEE Microwave and Guided Wave Lett., vol. 9, no. 1, 19-21, 1999.
[48] A. Donval, E. Toussaere, J. Zyss, G. Levy-Yurista, E. Jonsson, and A. A. Friesem, “Novel polymer-based resonant grating-waveguide structures,” Synthetic Metals, vol. 124, pp. 19-22, 2001.
[49] D. Wawro, P. S. Priambodo, and R. Magnusson, “Resonating periodic waveguides as ultraresolution sensors in biomedicine,” in Nano-engineering: Fabrication, Properties, Optica and Devices, SPIE’s 49th Annual Meeting, 2-6 Aug. 2004, Denver, Colorado, Proc, SPIE, vol. 5515, pp. 52-57, 2004.
[50] D. Wawro, S. Tibuleac, R. Magnusson, and H. Liu, “Optical fiber endface biosensor based on resonance in dielectric waveguide gratings,” Biomedical Diagnostic, Guidance, and Surgical-Assist Systems II, Proc. SPIE, vol. 3911, pp. 86-94, 2000.
[51] N. J. Goddard, K. Singh, R. J. Holmes, and B. Bastani, “Resonant grating sensors using frustrated total-internal reflection,” Sensors and Actuators B, vol. 51, pp. 131-136, 1998.
[52] G. Levy-Yurista, A. A. Friesem, E. Pawlowski, L. Kuller, R. Ludwig, H. G. Weber, A. Donval, E. Toussaere, and J. Zyss, “Hybrid semiconductor polymer resonant grating waveguide structures, ” Optical Materials, vol. 17, pp. 149-154, 2001.
[53] H. Kikuta, N. Maegawa, A. Mizutani, K. Iwata, and H. Toyota, “Refractive index sensor with a guided-mode resonant grating filter,” Optical Engineering for Sensing and Nanotechnology, Proc. SPIE, vol. 4416, pp. 219-222, 2001.
[54] D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, “Thin-film multilayer optical filters containing diffractive elements and waveguides,” in Optical Thin Films V: New Developments, R. L. Hall, ed., Proc. 3133, pp. 273-286, 1997.
[55] A. Mizutani, H. Kikuta, and K. Iwata, “Numerical study on an asymmetric guided-mode resonant grating with a Kerr medium for optical switching,” J. Opt. Soc. Am. A, vol. 22, no. 2, pp. 355-360, 2005.
[56] S. Tibuleac and R. Magnusson, “Diffractive narrow-band transmission filters based on guided-mode resonance effects in thin-film multilayers,” IEEE Phton. Technol. Lett., vol. 9., no. 4, pp. 464-466, 1997.
[57] S. Tibuleac, R. Magnusson, T. T. Maldonado, P. P. Young, and T. R. Holzheimer, “Dielectric frequency-selective structures incorporating waveguide gratings,” IEEE Trans. on Microwave Theory and Techniques, vol. 48., no. 4, pp. 553-561, 2000.
[58] F. Schreier, M. Schmitz, and Olor Bryngdahl, “Beam displacement at diffractive structures under resonance conditions,” Opt. Lett., vol. 23, no. 8, pp.576-578, 1998.
[59] N. Dudovich, G. Levy-Yurista, A. Sharon, A. A. Friesem, and H.-G. Weber, “Active semiconductor-based grating waveguide structures,” IEEE J. Quantum Electron., vol. 37, no. 8, pp. 1030-1039
[60] D. Shim, Z. S. Liu, and R. Magnusson, “Resonant Brewster filters with absentee layers,” Opt. Lett., vol. 27, no. 15, pp. 1288-1290,. 2002.
[61] C. M. Wang, J. Y. Chang, C. L. Hsu, C. C. Lee and J. C. Yang, “Si-based guided-mode resonance filter on a microoptical bench”, Electron. Lett., vol. 40, no. 21, pp. 1335–1336, 2004.
[62] R. Magnusson and Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photon. Techno. Lett., vol. 18, no. 14, pp. 1479-1481, 2006.
[63] A. Sharon, D. Rosenblatt, A. A. Friesem, H. G. Webber, H. Engel and R. Steingrueber, “Light modulation with resonant grating-waveguide structures,” Opt. Lett., vol. 19, pp. 1564-1566, 1996.
[64] S. Tibuleac and R. Magnusson, “Reflection and transmission guided-mode resonance filters,” J. Opt. Soc. Am. A, vol. 14, no. 7, pp. 1617-1626, 1997.
[65] D. W. Carr, J. P. Sullivan, and T. A. Friedmann, “Laterally deformable nanomechanical zeroth-order gratings: anomalous diffraction studied by rigorous coupled-wave analysis,” Opt. Lett., vol. 28, no. 18, pp. 1636-1638, 2003.
[66] C. F. R. Mateus, M. C. Y. Huang, P. Li, B. T. Cunningham, and C. J. Chang-Hasnain, “Compact label-free biosensor using VCSEL-based measurement system,” IEEE Photon. Techno. Lett., vol. 16, no. 7, pp. 1712-1714, 2004.
[67] Y. Ding and R, Magnusson, “Use of nondegenerate resonant leaky modes to fashion diverse optical spectra,” Opt. Exp., vol. 12, no. 9, pp. 1885-1891, 2004.
[68] S. S. Wang and R. Magnusson, “Multilayer waveguide-grating filters,” Appl. Opt., vol. 34, no. 15, pp. 2414-2420, 1995.
[69] C. Lenaerts, V. Moreau, Y. F. Lion, and Y. L. Renotte, “Narrow bandwidth wavelength filter by guided mode resonance,” Opt. Eng., vol.43, no. 11, pp. 2631-2639, 2004.
[70] Y. Nie, L. Wang, Z. Wang, and C. Lai, “Beam selector dependent on incident angle by guided-mode resonant subwavelength grating,” Opt. Eng., vol. 41, pp. 2966-2969, 2002.
[71] T. Katchalski, G. Levy-Yurista, A. A. Friesem, G. Martin, R. Hierle, and J. Zyss, “Light modulation with electro-optic polymer-based resonant grating waveguide structures,” Opt. Exp., vol. 13, no. 12, pp. 4645-4650, 2005.
[72] R. R. Boye, R. W. Ziolkowski, and R. K. Kostuk, “Resonant waveguide-grating switching device with nonlinear optical material,” Appl. Opt., vol. 38, no. 24, pp. 5181-5185, 1999.
[73] Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Exp., vol.12, no. 23, pp. 5661-5674, 2004.
[74] M. A. Bader, C. Kappel, A. Selle, J. Ihlemann, M. L. Ng, and P. R. Herman, “F2-laser-machined submicrometer gratings in thin dielectric films for resonant grating waveguide applications,” Appl. Opt., vol. 45, no. 25, pp. 6586-6590, 2006.
[75] D. W. Dobbs and B. T. Cunningham, “Optically tunable guided-mode resonance filter,” Appl. Opt., vol. 45, no. 28, pp. 7286-7293, 2006.
[76] R. Magnusson and S. S. Wang, “Transmission bandpass guide-mode resonance filters,” Appl. Opt., vol. 34, no. 35, pp. 8106-8109, 1995.
[77] T. Kobayashi, Y. Kanamori, and K. Hane, “Surface laser emission from solid polymer dye in a guided mode resonant grating filter structure,” Appl. Phys Lett., vol. 87, 151106-1151106-2, 2005.
[78] R. Magnusson, Y. Ding, K. J. Lee, P. S. Priambodo, and D. Wawro, “Characteristics of resonant leaky-mode biosensors,” in Nanosensing: Material and Devices II, ed. M. S. Islam and A. K. Dutta, Proc. SPIE, vol. 6008, pp. 60080U-1-60080U-10, 2005.
[79] T. Katchalski, E. Teitelbaum, and A. A. Friesem, “Toward ultranarrow bandwidth polymer-based resonant grating waveguide structures,” Appl. Phys. Lett., vol. 84, no. 4, pp. 472-474, 2004.
[80] G. Levy-Yurista and A. A. Friesem, “Very narrow spectral bandwidths with multilayered grating-waveguide structures,” Appl. Phys. Lett., vol. 77, pp. 1596-1598, 2000.
[81] R. Rabady and I. Avrutsky, “Titania, silicon dioxide, and tantalum pentoxide waveguides and optical resonant filters prepared with radio-frequency magnetron sputtering and annealing,” Appl. Opt., vol. 44, no. 3, pp. 378-383, 2005.
[82] R. Magnusson, P. S. Priambodo, and D. Shin, “Cascaded resonant-grating filters: experimental results on lowered sidebands and narrow lines,” IEEE Photon. Techno. Lett., vol. 15, no. 3, pp. 404-406, 2003.
[83] S. Peng and G. M. Morris, “Experimental demonstration of resonant anomalies in diffraction from two-dimensional gratings,” Opt. Lett., vol. 21, no. 8, pp, 549-551, 1996.
[84] A. Sharon, S. Glasberg, D. Rosenblatt, and A. A. Friesem, “Metal-based resonant grating waveguide structures,” J. Opt. Soc. Am. A, vol. 14, no. 3, pp. 588-595, 1997.
[85] R. Rabady and I. Avrutsky, “Experimental characterization of simultaneous spatial and spectral filtering by an optical resonant filter,” Opt. Lett., vol. 29, no. 6, pp. 605-607, 2004.
[86] D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Normal-incidence guided-mode resonant grating filters: design and experimental demonstration,” Opt. Lett., vol. 23, no. 9, pp. 700-702, 1998.
[87] P. Rochon, A. Natansohn, C. L. Callender, and L. Robitaille, “Guided mode resonance filters using polymer films,” Appl. Phys. Lett., vol. 71, no. 8, pp. 1008-1010, 1997.
[88] R. Rabady and I. Avrutsky, “Fabrication methods of optical resonant filters with a close-to-rectangular filtering profile,” Appl. Opt., vol. 43, no. 5, pp. 1114-1120, 2004.
[89] D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, and J. M. Bendickson, ”Effects of modulation strength in guided-mode resonant subwavelength grating at normal incidence,” J. Opt. Soc. Am. A, vol. 17, no. 7, pp. 1221-1230, 2000.
[90] D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Flat-top narrow-band spectral response obtained from cascaded resonant grating reflection filters,” Appl. Opt., vol. 41, no. 7, pp. 1241-1245, 2002.
[91] A. Mizutani, H. Kikuta, and K. Iwata, “Guided-mode resonant grating filter with an antireflection structured surface,” J. Opt. Soc. Am. A, vol. 19, no. 7, pp. 1346-1351, 2002.
[92] P. S. Priambodo, T. A. Maldonado, and R. Magnusson, “Fabrication of characterization of high-quality waveguide-mode resonant optical filters,” Appl. Phys. Lett., vol. 83, no. 16, pp. 3248-3250, 2003.
[93] G. P. Bryan-Brown and J. R. Sambles, “Grating coupled liquid crystal waveguides using nematics and smectics,” J. Appl. Phys., vol. 73, no. 8, pp. 3603-3607, 1993.
[94] R. Rabady and I. Avrutsky, “Reliable fabrication technologies for optical resonant filters,” Appl. Opt., vol. 42, no. 22, pp. 4499-4504, 2003.
[95] A. Rosenberg, M. W. Carter, J. A. Casey, M. Kim, R. T. Holm, R. L. Hendry, C. R. Eddy, V. A. Shamamian, K. Bussmann, S. Shi, and D. W. Prather, “Guided resonance in asymmetrical GaN photonic crystal slabs observed in the visible spectrum,” Opt. Exp., vol. 13, no. 17, pp. 6564-6571, 2005.
[96] A. Lin, Z. Lu, S. Shi, G. Jin, and D. W. Prather, “Experimentally demonstrated filters based on guided resonance of photonic-crystal films,” Appl. Phys. Lett., vol. 87, pp. 091102-1-091102-3,. 2005.
[97] K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelength,” Phys. Rev., vol. 73, pp. 115126-1-115126-14, 2006.
[98] Y. Kanamori, t. Kitani, and K. Hane, “Guided-mode resonant grating fabricated on silicon-on-insulator substrate,” J. J. Apl. Phys., vol. 45, no. 3A, pp. 1883-1885, 2006.
[99] H. A. Macleod, “Challenges in the design and production of narrow-band filters for optical filber teleconmmunications,” in Optical and Infrared Thin Films, M. L. Fulton, ed., Proc. SPIE, vol. 4094, pp, 46-57, 2000.
[100] A. Sentenac and A.-L. Fehrembach, “Angular tolerant resonant grating filters under oblique incidence,” J. Opt. Soc. Am. A, vol. 22, no. 3, pp. 475-480, 2005.
[101] F. Lemarchand, A. Sentenac, and H. Giovannini, “Increasing the angular tolerance of resonant grating filters with doubly periodic structures,” Opt. Lett., vol. 23, pp. 1149-1151, 1998.
[102] R. Magnusson and Y. Ding, “Tunable resonant leaky mode silicon-on-insulator photonic devices,” Proc. SPIE, vol. 6123, pp. 612309-1-612309-11, 2006.
[103] M. Nevière, “Electromagnetic theory of gratings,” R. Petit, Ed., chapter 5, Springer Verlag, Berlin, 1980.
[104] S. Zhang and T. Tamir, “Spatial modifications of Gaussian beams diffracted by reflection gratings,” J. Opt. Soc. Am. A, vol. 6, no. 9, pp. 1368-1381, 1989.
[105] M. T. Gale, K. Knop, and R. H. Morf, “Zero-order diffractive microstructures for security applications,” in Optical Security and Anticounterfeiting Systems, W. F. Fagan, ed., Proc. Soc. Photo-Opt. Instrum. Eng., vol. 1210, pp. 83-89, 1990.
[106] M. Nevière, E. Popov, and R. Reinisch, “Electromagnetic resonance in linear and nonlinear optics: phenomenological study of grating behavior through the poles and zeros of the scattering operator,” J. Opt. Soc. Am. A, vol. 12, no. 3, pp. 513-523, 1995.
[107] D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Design considerations for narrow-band dielectric reflection filters of finite length,” J. Opt. Soc. Am. A, vol. 17, no. 7, pp. 1241-1249, 2000.
[108] R. W. Day, S. S. Wang, and R. Magnusson, “Filter-response line shapes of resonant waveguide gratings,” IEEE J. Lightwave Techno., vol. 14, no. 8, pp. 1815-1824, 1996.
[109] M. C. Hutley, “Diffraction gratings,” Academic Press, 1982.
[110] S. M. Norton, T. Erdogan, and G. M. Morris, “Coupled-mode theory of resonant-grating filters,” J. Opt. Soc. Am. A, vol. 14, no.3, pp, 629-639, 1997.
[111] M. G. Moharam, D. A. Pomment, E. B. Grann, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A, vol. 12, pp. 1068-1076, 1995.
[112] M. G. Moharam, D. A. Pomment, and E. B. Grann, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A, vol. 12, no. 5, pp. 1077-1086, 1995.
[113] S. Peng and G. M. Morris, “Efficient implementation of rigorous coupled-wave analysis for surface-relief gratings,” J. Opt. Soc. A, vol. 12, no. 5, pp. 1087-1096, 1995.
[114] G. Bao and k. Huang, “Optimal design of guided-mode grating resonance filters,” IEEE Photon. Techno. Lett., vol. 16, no. 1, pp. 141-143, 2004.
[115] S. M. Norton, G. M. Morris, and T. Erdogan, “Experimental investigation of resonant-grating filter lineshapes in comparison with theoretical models,” J. Opt. Soc. Am. A, vol. 15, no. 2, pp. 464-472, 1998.
[116] T. Vallius, P. Vahimaa, and J. Turunen, “Pulse deformations at guided-mode resonance filters,” Opt. Exp., vol. 10, no. 16, pp. 840-843, 2002.
[117] D. W. Peters, S. A. Kemme, and G. R. Hadley, “Effect of finite grating, waveguide width, and end-facet geometry on resonant subwavelength grating reflectivity,” J. Opt. Soc. Am. A, vol. 21, no. 6, pp. 981-987, 2004.
[118] Z. S. Liu and R. Magnusson, “Concept of multiorder multimode resonant optical filters,” IEEE Photon. Techno. Lett., vol. 14, no. 8, pp. 1091-1093, 2002.
[119] G. Purvinis, P. S. Priambodo, M. Pomerantz, M. Zhou, T. A. Maldonado, and R. Magnusson, “Second-harmonic generation in resonant waveguide gratings incorporating ionic self-assembled monolayer polymer films,” Opt. Lett., vol. 29, no. 10, pp. 1108-1110, 2004.
[120] Y. Ding and R. Magnusson, “Doubly resonant single-layer bandpass optical filters,” Opt. Lett., vol. 29, no. 10, pp. 1135-1137, 2004.
[121] A.-L. Fehrembach, D. Maystre, and A. Sentenac, “Phenomenological theory of filtering by resonant dielectric gratings,” J. Opt. Soc. Am. A, vol. 19, no. 6, pp. 1136-1144, 2002.
[122] C. Wei, S. Liu, D. Deng, and J. Shen, “Electric field enhancement in guided-mode resonance filters,” Opt. Lett., vol. 31, no.9, pp. 1223-1225, 2006.
[123] F. Schreier, M. Schmitz, and O. Bryngdahl, “Pulse delay at diffractive structures under resonance conditions,” Opt. Lett., vol. 23, no. 17, pp. 1337-1339, 1998.
[124] G. Bao and K. Huang, “Computational design for guided-mode grating resonances,” J. Opt. Soc. Am. A, vol. 22, no. 7, pp. 1408-1413, 2005.
[125] T. Tamir and S. Zhang, “Resonant scattering by multilayered dielectric gratings,” J. Opt. Soc. Am. A, vol. 14, no. 7, pp. 1607-1616, 1997.
[126] D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Interference approach applied to dual-grating dielectric resonant grating reflection filters,” Opt. Lett., vol. 26, no. 22, pp. 1749-1751, 2001.
[127] E. Popov and B. Bozhkov, “Corrugated waveguides as resonance optical filters-advantages and limitations,” J. Opt. Soc. Am. A, vol. 18, no. 7, pp. 1758-1764, 2001.
[128] D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Normally incident resonant grating reflection filters for efficient narrow-band spectral filtering of finite beams,” J. Opt. Soc. Am. A, vol. 18, no. 9, pp. 2109-2120, 2001.
[129] J. Saarinen, E. Noponen, and J. Turunen, “Guided-mode resonance filters of finite aperture,” Opt. Eng., vol. 34, pp. 2560-2566, 1995.
[130] D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, ”Homogeneous layer models for high-apstial-frequency dielectric surface-relief gratings: conical diffraction and antireflection designs,” Appl. Opt., vol. 33, pp. 2695-2706, 1994.
[131] R. R. Boye and R. K. Kostuk, “Investigation of the effect of finite grating size on the performance of guided-mode resonance filters,” Appl. Opt., vol. 39, no. 21, pp. 3649-3653, 2000.
[132] M. J. Adams, “An introduction to optical waveguide,” Wiley, New York, 1981.
[133] C. Peng and W. A Challener, “Input-grating couplers for narrow Gaussian beam: influence of groove depth,” Opt. Exp., vol. 12, no. 26, pp.6481-6490, 2004.
[134] J. D. Rancourt, “Optimal thin film user’s handbook,” Macmillan Publishing, New York, 1987.
[135] C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, ”Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Techno. Lett., vol. 16, no. 2, pp. 518-520, 2004.
[136] C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62
指導教授 張正陽(Jenq-Yang Chang) 審核日期 2007-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明