博碩士論文 91246018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:13.58.137.218
姓名 林昭弘(Chao Hung)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 積體式週期與非週期極性反轉鈮酸鋰光電與雷射元件
(Integrated Periodically and Aperiodically Poled Lithium Niobate (PPLN/APLN) Photonics and Laser Devices)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ 導波共振光學元件應用於生物感測器之研究
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ Continuous-wave narrow-line yellow laser generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings
★ 低溫成長鍺薄膜於單晶矽基板上之研究★ 矽鍺薄膜及其應用於光偵測器之研製
★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器★ 整合慣性感測元件之導波矽基光學平台研究
★ 矽基光偵測器研製與整合於光學波導系統★ 光學滑鼠用之光學元件設計
★ 高效率口袋型LED 投影機之研究★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究
★ 極化繞射光學元件在高密度光學讀取頭上之應用研究★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究
★ 經氣氛處理之鈦酸鋇單晶其光折變性質及電荷移轉與波長的關係★ 在不同溫度時氣氛處理鈦酸鋇單晶性質之比較
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在許多光電和雷射系統應用中需要使用到緊緻、多功能與高效率的光學元件。準相位匹配材料中獨特的積體式電光效應加上本身所具備的高效率非線性頻率轉換能力可用來開發許多引人注目的單塊晶多功能元件。延續過往的研究成果,在本論文中研究與論證了幾個在週期式與非週期式極性反轉鈮酸鋰(PPLN/APLN)中實現的多功能積體式光電與雷射元件。它們都利用準相位匹配晶體中可工程化的鐵電結構用以最佳化並同時實現前述之電光與非線性多功能光電與雷射系統。這些元件有極大的潛力應用在光通訊、光儲存、生醫、顯示技術與遙測等用途上。
於第一章,將會簡介研究動機與背景。於第二章,將會說明電光式準相位匹配之理論與工作原理。於第三章,將會詳細論述利用一塊釹鎂摻雜週期式極性反轉鈮酸鋰(Nd:MgO:PPLN)晶體實現一波長為 1.085 μm之雷射泵激電光式內部Q調制雷射系統之設計、建造與實驗論證之方法與流程。於第四章,首次實驗論證利用一APLN晶體實現主動式窄帶多波長濾波器之設計大綱將會被提出。於第五章,將會論證與分析一新穎的電光式Q調制腔內二倍頻(SHG)釹釩酸釔雷射,它使用了一塊經過優化設計之單一光柵結構APLN晶體,可同時實現一個雷射Q開關與一個二倍頻產生器。於第六章,將會提出建立於單塊PPLN的一個增益被提高與頻譜被窄化的光參數振盪器(OPO),其整合了一個光參數產生器與兩個電光式偏極化模態轉換器。文中也會論證其獨特的OPO信號頻譜處理能力。此研究工作的總結與未來展望最後會在第七章與第八章分別被提出。
這些成功的論證無疑地是發展非線性積體光學多項實質應用的重大進展。據此進展而研發的數個先進非線性積體光電與雷射元件正持續研究中。
摘要(英) Compact, multi-function yet efficient optical devices are in great demand in many photonics and laser systems and applications. The ingenious integration of the unique electro-optic (EO) effects of a quasi-phase-matching (QPM) material with its capability of performing efficient nonlinear frequency conversion has led to the development of many attractive monolithic multi-function devices. To continue and extend these efforts and achievements, several advanced integrated photonics and laser devices of capable of performing multiple optical functions based on periodically and aperiodically poled lithium niobate (PPLN/APLN) devices were studied and demonstrated in this dissertation work. They were realized upon the idea of manipulation of the engineerable domain structure of a QPM crystal to optimize performing the prescribed EO and nonlinear-optic (NLO) processes simultaneously to achieve the multi-function operation in photonics and laser systems. These devices are of potential for applications in optical communications, optical storages, biomedicine, displays, remote sensing, etc.
In chapter 1, the motivation and background introduction of this study will be given, while in chapter 2, the theory and working principles of EO QPM devices will be introduced. In chapter 3, the design, construction, and experimental demonstration of a laser-diode-pumped, electro-optically internal-Q-switched laser system radiating at 1.085 μm fabricated using a periodically poled Nd:MgO:LiNbO3 (Nd:MgO:PPLN) crystal will be detailed. In chapter 4, a design scheme for and the first experimental demonstration of active narrowband multi-wavelength filters based on APLN crystal will be presented. In chapter 5, a novel electro-optically Q-switched intracavity second-harmonic generation (SHG) Nd:YVO4 laser by using a single-grating-structure APLN crystal optimized for simultaneously performing a laser Q-switch and a second-harmonic generator will be revealed and characterized. In chapter 6, a gain-enhanced and spectral-narrowed optical parametric oscillator based on a monolithic PPLN integrating an optical parametric generator with two electro-optically active polarization-mode converters will be reported. Unique spectral manipulation of the OPO signal will also be demonstrated. The summary and outlook of this work will finally be given in chapters 7 and 8, respectively.
The success of these demonstrations will certainly be a significant step in advancing the nonlinear integrated optics essential for various applications. The study and development of several derived and advanced nonlinear integrated photonics and laser devices are under way.
關鍵字(中) ★ 準相位匹配
★ 濾波器
★ 極化模態轉換器
★ 光參數振盪器
★ 鈮酸鋰
關鍵字(英) ★ PPLN
★ APLN
★ QPM
★ filter
★ polarization-mode converter
★ OPO
論文目次 Abstract 1
中文摘要 3
Acknowledgement 4
List of Figures 6
Chapter 1 Introduction 9
Chapter 2 Principles of EO PPLN and Its Properties 17
Chapter 3 EO PPLN as An Intracavity Q-switch for Laser 29
Introduction 29
Q-switch theory 30
Laser Design 34
Laser Performance 40
Summary 43
Chapter 4 EO Aperiodically Poled Lithium Niobate Devices 44
Introduction 44
Experimental demonstration and discussion 49
Conclusion 54
Chapter 5 APLN Q-switched and Frequency-doubled Laser 55
Introduction 55
Design 56
Fabrication 59
Experiment 60
Summary 63
Chapter 6 Gain-enhanced and spectral-narrowed optical parametric oscillator using PPLN electro-optic polarization-mode converters 64
Device design and working principle 66
Experiments 68
Conclusion 71
Chapter 7 Summary and Conclusion 73
Chapter 8 Outlook 76
Reference 78
參考文獻 1.Yan-Qing Lu, Zhi-Liang Wan, Quan Wang, Yuan-Xin Xi, and Nai-Ben Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719 (2000). doi: 10.1063/1.1329325
2.L. D. Shearer, M. Leduc, and J. Zachorowski, "CW laser oscillations and tuning characteristics of neodymium-doped lithium niobate crystals," IEEE J. Quantum Electron. 23, 1996-1998 (1987).
3.Yiming Zhu, Xianfeng Chen, Jianhong Shi, Yuping Chen, Yuxin Xia, and Yingli Chen, "Wide-range tunable wavelength filter in periodically poled lithium niobate," Opt. Comm. 228, 139-143 (2003). doi: 10.1016/j.optcom.2003.09.081
4.Xianfeng Chen, Jianhong Shi, Yuping Chen, Yiming Zhu, Yuxing Xia, and Yingli Chen, "Electro-optic Solc-type wavelength filter in periodically poled lithium niobate," Opt. Lett. 28, 2115-2117 (2003). doi: 10.1364/OL.28.002115
5.Y. H. Chen and Y. C. Huang, "Actively Q-switched Nd:YVO4 laser using an electro-optic periodically poled lithium niobate crystal as a laser Q-switch," Opt. Lett. 28, 1460-1462 (2003). doi: 10.1364/OL.28.001460
6.D. A. Pinnow, R. L. Abrams, J. F. Lotspeich, and D. Henderson, "An electro-optic tunable filter," Appl. Phys. Lett. 34, 391-393 (1979). doi: 10.1063/1.90801
7.Y. H. Chen, Y. Y. Lin, C. H. Chen, and Y. C. Huang, "Monolithic quasi-phase-matched nonlinear crystal for simultaneous laser Q switching and parametric oscillation in a Nd:YVO4 laser," Opt. Lett. 30, 1045-1047 (2005). doi:10.1364/OL.30.001045
8.J. Yarborough, J. Falk, and E. Ammann, "Repetitively pulsed internal optical parametric oscillation -- Theory and experiment," IEEE J. Quantum Electron. 7, 307-307 (1971).
9.J. Falk, J. Yarborough, and E. Ammann, "Internal optical parametric oscillation," IEEE J. Quantum Electron. 7, 359-369 (1971).
10.Y. H. Chen , Y. C. Huang , Y. Y. Lin , and Y. F. Chen, "Intracavity PPLN crystals for ultra-low-voltage laser Q-switching and high-efficiency wavelength," Appl. Phys. B 80, 889-896 (2005). doi: 10.1007/s00340-005-1799-0
11.Xi Gu, Xianfeng Chen, Yuping Chen, Xianglong Zeng, Yuxing Xia, and Yingli Chen, "Narrowband multiple wavelengths filter in aperiodic optical superlattice," Opt. Comm. 237, 53-58 (2004). doi: 10.1016/j.optcom.2004.03.058
12.Shi-ning Zhu, Yong-yuan Zhu, and Nai-ben Ming, "Quasi-Phase-Matched Third-Harmonic Generation in a Quasi-Periodic Optical Superlattice," Science 278, 843-846 (1997). doi: 10.1126/science.278.5339.843
13.M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, "Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides," Opt. Lett. 24, 1157-1159 (1999). doi: 10.1364/OL.24.001157
14.Y. W. Lee, F. C. Fan, Y. C. Huang, B. Y. Gu, B. Z. Dong, and M. H. Chou, "Nonlinear multiwavelength conversion based on an aperiodic optical superlattice in lithium niobate," Opt. Lett. 27, 2191-2193 (2002). doi: 10.1364/OL.27.002191
15.Xianfeng Chen, Fei Wu, Xianglong Zeng, Yuping Chen, Yuxing Xia, and Yingli Chen, "Multiple quasi-phase-matching in a nonperiodic domain-inverted optical superlattice," Phys. Rev. A 69, 013818 (2004). doi: 10.1103/PhysRevA.69.013818
16.C. R. Fernandez-Pousa, and J. Capmany, "Dammann grating design of domain-engineered lithium niobate for equalized wavelength conversion grids," IEEE Photon. Technol. Lett. 17, 2005 1037-1039 (2005). doi: 10.1109/LPT.2005.845775
17.L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, "Quasi-phase-matched 1.064-μm-pumped optical parametric oscillator in bulk periodically poled LiNbO3," Opt. Lett. 20, 52-54 (1995). doi: 10.1364/OL.20.000052
18.L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, "Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3," J. Opt. Soc. Am. B 12, 2102-2116 (1995). doi: 10.1364/JOSAB.12.002102
19.L. E. Myers and W. R. Bosenberg, "Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators," IEEE J. Quantum Electron. 33, 1663-1672 (1997). doi: 10.1109/3.631262
20.P. E. Powers, T. J. Kulp, and S. E. Bisson, "Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design," Opt. Lett. 23, 159-161 (1998). doi: 10.1364/OL.23.000159
21.J. Raffy, T. Debuisschert, and J. -P. Pocholle, "Widely tunable optical parametric oscillator with electrical wavelength control," Opt. Lett. 22, 1589-1591 (1997). doi: 10.1364/OL.22.001589
22.C. Yu and A. H. Kung, "Grazing-incidence periodically poled LiNbO3 optical parametric oscillator," J. Opt. Soc. Am. B 16, 2233-2238 (1999). doi: 10.1364/JOSAB.16.002233
23.Amnon Yariv and Pochi Yeh, "Optical Waves in Crystals," ISBN:0-471-09142-1
24.A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE J. Quantum Electron. 9, 919-933 (1973).
25.A. Cordova-Plaza, T. Y. Fan, M. J. F. Digonnet, R. L. Byer, and H. J. Shaw, "Nd:MgO:LiNbO3 continuous- wave laser pumped by a laser diode," Opt. Lett. 13, 209-211 (1988). doi: 10.1364/OL.13.000209
26.J. J. Zayhowski and C. Dill III, "Coupled-cavity electro-optically Q-switched Nd:YVO4 microchip lasers," Opt. Lett. 20, 716-718 (1995). doi: 10.1364/OL.20.000716
27.Yingxin Bai, Nianle Wu, Jian Zhang, Jiaqiang Li, Shiqun Li, Jun Xu, and Peizhen Deng, "Passively Q-switched Nd:YVO4 laser with a Cr4+:YAG crystal saturable absorber," Appl. Opt. 36, 2468-2472 (1997). doi: 10.1364/AO.36.002468
28.Martin Maiwald, Sven Schwertfeger, Reiner Güther, Bernd Sumpf, Katrin Paschke, Christian Dzionk, Götz Erbert, and Günther Tränkle, "600 mW optical output power at 488 nm by use of a high-power hybrid laser diode system and a periodically poled MgO:LiNbO3 bulk crystal," Opt. Lett. 31, 802-804 (2006). doi: 10.1364/OL.31.000802
29.Orazio Svelto and David C. Hanna, "Principles of lasers 3rd edition," ISBN: 0-306-42967-5
30.Walter Koechner, "Soilid-state laser engineering," ISBN: 3-540-18747-2
31.H. Ishizuki, I. Shoji, and T. Taira, "Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature," Appl. Phys. Lett. 82, 4062-4064 (2003). doi: 10.1063/1.1582371
32.A. Kuroda, S. Kurimura, and Y. Uesu, "Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields," Appl. Phys. Lett. 69, 1565-1567 (2003). doi: 10.1063/1.117031
33.K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, "Electric-field poling in Mg-doped LiNbO3," J. Appl. Phys. 96, 6585-6590 (2004). doi: 10.1063/1.1811391
34.T. Y. Fan, A. Cordova-Plaza, M. J. F. Digonnet, R. L. Byer, and H. J. Shaw, "Nd:MgO:LiNbO3 spectroscopy and laser devices," J. Opt. Soc. Am. B 3, 140-148 (1986). doi: 10.1364/JOSAB.3.000140
35.E. Lallier, J. P. Pocholle, M. Papuchon, M. P. De Micheli, M. J. Li, Qing He, D. B. Ostrowsky, C. Grezes-Besset, and E. Pelletier, "Nd:MgO:LiNbO3 channel waveguide laser devices," IEEE J. Quantum Electron. 27, 618-625 (1991). doi: 10.1109/3.81371
36.J. L. Blows, T. Omatus, J. Dawes, H. Pask, and M. Tateda, "Heat generation in Nd:YVO4 with and without laser action," IEEE Photon. Technol. Lett. 10, 1727-1729 (1998). doi: 10.1109/68.730483
37.Z. D. Luo, Y. D. Huang, M. Montes, and D. Jaque, "Improving the performance of a neodymium aluminium borate microchip laser crystal by resonant pumping," Appl. Phys. Lett. 85, 715-717 (2004). doi: 10.1063/1.1775281
38.H. Y. Shen, H. Xu, Z. D. Zeng, W. X. Lin, R. F. Wu, and G. F. Xu, "Measurement of refractive indices and thermal refractive-index coefficients of LiNbO3 crystal doped with 5 mol. % MgO," Appl. Opt. 31, 6695-6697 (1992).
39.J. J. Degnan, "Theory of the optimally coupled Q-switched laser," IEEE J. Quantum Electron. 25, 214-220 (1989). doi: 10.1109/3.16265
40.R. R. Willey, "Achieving narrow bandpass filters which meet the requirements for DWDM," Thin Solid Films 398-399, 1-9 (2001). doi: 10.1016/S0040-6090(01)01295-0
41.J. W. Evans, "Solc Birefringent Filter," J. Opt. Soc. Am. 48, 142-143 (1958). doi: 10.1364/OE.15.009859
42.R. C. Alferness, "Efficient waveguide electro-optic TE↔TM mode converter/wavelength filter," Appl. Phys. Lett. 36, 513-515 (1980). doi: 10.1063/1.91589
43.R. C. Alferness and L. L. Buhl, "Electro-optic waveguide TE to TM mode converter with low drive voltage," Opt. Lett. 5, 473- (1980). doi: 10.1364/OL.5.000473
44.J. Wu, T. Kondo and R. Ito, "Optimal Design for Broadband Quasi-Phase-Matched Second-Harmonic Generation Using Simulated Annealing," J. Lightwave Technol. 13, 456-460 (1995). doi: 10.1109/50.372442
45.S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by simulated annealing," Science 220, 671-680 (1983). doi: 10.1126/science.220.4598.671
46.C. Y. Huang, C. H. Lin, Y. H. Chen, and Y. C. Huang, "Electro-optic Ti:PPLN waveguide as efficient optical wavelength filter and polarization mode converter," Opt. Express 15, 2548-2554 (2007). doi: 10.1364/OE.15.002548
47.M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 23, 2631-2654 (1992). doi: 10.1109/3.161322
48.J. A. Giordmaine and R. C. Miller, "Tunable coherent parametric oscillation in LiNbO3 at optical frequencies," Phys. Rev. Lett., 14, 973–976 (1965). doi: 10.1103/PhysRevLett.14.973
49.Y. Ishigame, T. Suhara, and H. Nishihara, "LiNbO3 waveguide second-harmonic-generation device phase matched with a fan-out domain-inverted grating," Opt. Lett. 16, 375-377 (1991). doi: 10.1364/OL.16.000375
50.M. E. Klein, P. Gross, K. -. Boller, M. Auerbach, P. Wessels, and C. Fallnich, "Rapidly tunable continuous-wave optical parametric oscillator pumped by a fiber laser," Opt. Lett. 28, 920-922 (2003). doi:10.1364/OL.28.000920
51.N. O'Brien, M. Missey, P. Powers, V. Dominic, and K. L. Schepler, "Electro-optic spectral tuning in a continuous-wave, asymmetric-duty-cycle, periodically poled LiNbO3 optical parametric oscillator," Opt. Lett. 24, 1750-1752 (1999). doi:10.1364/OL.24.001750
52.P. Gross, M. E. Klein, H. Ridderbusch, D. -. Lee, J. -. Meyn, R. Wallenstein, and K. -. Boller, "Wide wavelength tuning of an optical parametric oscillator through electro-optic shaping of the gain spectrum," Opt. Lett. 27, 1433-1435 (2002). doi:10.1364/OL.27.001433
指導教授 張正陽、陳彥宏
(Jenq Yang Chang、Yen Hung Chen)
審核日期 2009-2-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明