博碩士論文 91246019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.147.67.166
姓名 彭政忠(Cheng-Chung Peng)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 新型廣視角、高亮度、高對比之扭轉-垂直配向液晶顯示元件
(Novel Wide-Viewing-Angle, High-Brightness and High-Contrast-Ratio Twisted-Vertical AlignedLiquid Crystal Display Devices)
相關論文
★ 液晶填充分佈式布拉格反射鏡波導★ 高分子分散液晶薄膜用於可調變全像影像之研究
★ 液晶/單體中光聚合效應的圖案轉換觀察和由Z-scan方法鑑定非線性光學現象★ 拉伸式長週期光纖光柵的模態色散現象研究
★ 可調式窄頻液晶濾波器★ 相移影像式橢圓儀之建立
★ 雙波長影像式橢圓儀之建立
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於扭轉-垂直配向(twisted-vertical aligned, TVA)液晶顯示模式具有扭轉向列(twisted nematic, TN)及垂直配向(vertical alignment, VA)兩種模式的優點,因此這篇論文選定此TVA模式作為開發新型液晶顯示器之基本架構。TVA液晶元件,主要是在VA液晶盒內摻入對掌性化合物(Chiral compound),該化合物濃度可決定液晶盒厚度d與對掌性液晶分子間螺距 p (Chiral pitch)的比率d/p值,並調整液晶分子扭轉的角度,而且由該d/p比率與光程差(Δnd)值決定TVA液晶盒的最大穿透率,其中∆n為液晶分子雙折射率。
在本篇論文中我們提出三種利用簡單製程所完成的定向結構,它可使液晶分子形變成一連續扭轉之形態,稱為連續區域之扭轉-垂直配向(continuum domain twisted-vertical aligned, CDTVA)液晶元件。第一種定向結構為畫素(pixel)周圍形成一突出物(protrusion)結構,第二、三種定向結構分別為單純上下兩層之銦錫氧化物(Indium-Tin-Oxide, ITO)透明電極(無蝕刻圖案)及上下兩層之ITO透明電極,蝕刻成特定圖案。我們利用單一配向之TVA液晶盒,模擬最佳參數條件d/p與Δnd,發現當符合Mauguin參數(u)近似於√3時,液晶盒最大穿透率與液晶分子排列方向無相關性,此結果與TN液晶模式特性吻合,並在我們提出的CDTVA液晶結構中,利用模擬及實驗獲得驗證。
我們針對不同的定向結構,設計不同畫素尺寸及電極圖案,研究該TVA液晶盒光學特性及液晶分子定向之穩定性。第一、二種定向結構,發現每一次電壓開關過程中,在畫素內的光學紋影,無法獲得穩定的定向結果。第三種定向結構,其液晶分子定向之穩定性可獲得改善。針對第三種定向結構,我們進一步利用半色調灰階(halftone-grayscale)的概念,設計一新型的電極圖案,以改善斜視角方向之灰階反轉的問題。最後,我們與現有廣視角液晶顯示元件作比較,本論文提出的各種TVA液晶顯示元件,其最大穿透率遠高於傳統PVA (patterned vertical alignment)液晶盒,其對比度及斜視角之顯示品質,較其它液晶顯示模式佳,而且不需要複雜製程即可實現。
摘要(英) The aim of this work is to create a novel liquid crystal display (LCD) based on the twisted-vertical aligned (TVA) mode, which combines the merits of the twisted nemtatic (TN) and vertical alignment (VA) modes. The TVA cell is doped with a chiral compound in the VA cell. The concentration of the chiral dopant is suitably adjusted to produce an optimal cell thickness-to-natural pitch ratio (d/p). The maximum transmittance of the TVA cell is determined by the d/p value and optical path difference ∆nd, where ∆n presents the LC birefringence.
In this dissertation, we propose three orienting structures without complex manufacture to make the LC alignment be deformed to a continuous twisted configuration, called the “continuum domain TVA (CDTVA)” cell. The first orienting structure is used to surround the protrusion in a pixel. The second and third orienting structures are both common and pixel ITO electrodes with and without the designated patterns, respectively. We used the mono-domain TVA cells to simulate the optimum conditions of d/p and ∆nd in the structure. When the Mauguin parameter (u) is approximately √3, the maximum transmission of the TVA cell is independent of the direction of orientation of the LC molecules. This result corresponds to that of a TN cell and agrees well with the simulated and experimental results in the CDTVA cell.
We designed various orienting structures with different pixel sizes and ITO patterns in order to study the stability of LC orientation and the optical performance in the novel TVA cells. The previous orienting structures 1 and 2 of the CDTVA cells had unstable schlieren patterns after each switching on/off cycle, because the LC orientation was unstable. The stability of the LC orientation can be improved in structure 3 of the CDTVA cell. Based on structure 3, we designed a new ITO pattern to improve the problem of grayscale inversion at an oblique viewing angle by using the concept of halftone-grayscale method. Finally, we compared various LCD modes with wide viewing angle and found that the maximum transmittance of our proposed TVA LCD cells in this dissertation is higher than that of conventional patterned vertical alignment (PVA) cells. The contrast ratio and the off-axis image quality are higher than that of other LCD modes. Moreover, it can be simply modified to produce a multidomain TVA cell because its fabrication processes is not complex.
關鍵字(中) ★ 液晶顯示元件
★ 高對比
★ 高亮度
★ 廣視角
關鍵字(英) ★ LCD
★ High Contrast Ratio
★ High Brightness
★ Wide Viewing Angle
論文目次 Abstract (in Chinese)....................................I
Abstract (in English)...................................II
Acknowledgements........................................IV
Contents.................................................V
List of Figures........................................VII
List of Tables.........................................XII
List of Symbols.......................................XIII
Chapter 1 Introduction...................................1
1.1 Liquid crystal displays..............................1
1.2 Motivation of the dissertation.......................5
1.3 Organization of the dissertation.....................7
References...............................................8
Chapter 2 LCD Operation Modes and Numerical Simulation Theory..................................................10
2.1 Principal operation of mono-domain LCD modes........10
2.1.1 Twisted-nematic (TN) cell.........................10
2.1.2 Vertical alignment (VA) cell......................13
2.1.3 Twisted-vertical aligned (TVA) cell...............15
2.2 The orienting mechanism of multidomain LCDs.........16
2.2.1 Multidomain twisted-nematic (TN) cells............17
2.2.2 Multidomain vertically aligned (VA) cells.........19
2.2.3 Multidomain twisted-vertical aligned (TVA) cells..24
2.3 Numerical simulations...............................26
2.3.1 Jones matrix method...............................26
2.3.2 Extended Jones matrix method......................31
References..............................................34
Chapter 3 Continuum Domain Twisted-Vertical Aligned (CDTVA) Cell............................................39
3.1 Introduction to CDTVA cell..........................39
3.2 Optimal conditions of TVA cell......................40
3.3 Orienting structure with surrounding protrusion.....47
3.3.1 Sample preparation................................47
3.3.2 Simulation results and discussions................48
3.3.3 Experimental results and discussions..............53
3.4 Orienting structure with surrounding oblique field..55
3.4.1 Sample preparation................................55
3.4.2 Simulation results and discussions................56
3.4.3 Experimental results and discussions..............58
3.5 Summary.............................................61
References..............................................62
Chapter 4 Patterned Twisted-Vertical Aligned (PTVA) Cell ...............................................64
4.1 Introduction to PTVA cell...........................64
4.2 Sample preparation..................................65
4.3 Simulation results and discussions..................66
4.4 Experimental results and discussions................70
4.5 Summary.............................................75
References..............................................76
Chapter 5 Novel PTVA Pixel Design for Improving Grayscale Inversion ...............................................78
5.1 Introduction to PTVA grayscale inversion............78
5.2 Methodology to improve grayscale inversion..........79
5.3 Pixel structure and operating principles............81
5.4 Simulation results and discussions..................85
5.5 Summary.............................................95
References..............................................96
Chapter 6 Summary and Future Work.......................98
6.1 Summary and conclusion..............................98
6.2 Future works.......................................100
References.............................................102
Publication List.......................................103
參考文獻 CH1
[1] F. Reinitzer, “Beiträge zur kenntniss des cholesterins,” Monatshefte für Chemie 9, 421–441 (1888).
[2] S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, New York, 2001).
R. Lu, X. Zhu, S. T. Wu, Q. Hong, and T. X. Wu, “Ultrawide-view liquid crystal displays,” J. Disp. Technol. 1, 3–15 (2005).
[4] P. Yeh, C. Gu, Optics of Liquid Crystal Displays (Wiley and Sons, Canada, 2010)
[5] P.G de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1993).
[6] D. K. Yang, and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, New York, 2006).
[7] E. Lueder, Liquid Crystal Displays: Addressing Schemes and Electro-Optical Effects (Wiley, Chichester, 2010).
[8] C. W. Oseen, “The theory of liquid crystals,” Trans. Faraday Soc. 29, 883–899 (1933).
[9] F. C. Frank, “Liquid crystals: on the theory of liquid crystals,” Discuss. Faraday Soc. 25, 19–28 (1958).
[10] O. K. C. Tsui, F. K. Lee, B. Zhang and P. Sheng, ” First-order liquid crystal orientation transition on inhomogeneous substrates,” Phys. Rev. E 69, 021704 (2004).
[11] I. C. Khoo, S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993).
[12] S. U. Choi, S. W. Kim, S. H. Hong, S. W. Shin, J. ho Ma, G. Son, and J. Y. Lee, ”Valley-aligned VA mode LCD,” SID Int. Symp. Dig. Tech. Pap. 36, 650–653 (2005).
[13] S. K. Lee, B. Y. Oh, Y. H. Kim, C. H. Ok, B. Y. Kim, J. Y. Hwang, and D. S. Seo, “Liquid crystal orientation mechanism and tilt angle transition behavior on homeotropic polymer surfaces due to Ion beam treatment,” J. Appl. Phys. 48, 011502 (2009).
[14] K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa and M. Sakamoto, Alignment Technologies and Applications of Liquid Crystal Devices (Taylor, New York, 2005).
[15] J. Chen, P. J. Bos, D. R. Bryant, D. L. Johnson, S. H. Jamal, and J. R. Kelly, “Simple four-domain twisted nematic liquid crystal display,” Appl. Phys. Lett. 67, 1990–1992 (1995).
[16] S. Varghes, G. P. Crawford, C. W. M. Bastiaansen, D. K. G. De Boer, and D. J. Broer, “Microrubbing technique to produce high pretilt multidomain liquid crystal alignment,” Appl. Phys. Lett. 85, 230–232 (2004).
[17] S. Varghes, G. P. Crawford, C. W. M. Bastiaansen, D. K. G. De Boer, and D. J. Broer, “High pretilt four-domain twisted nematic liquid crystal display by microrubbing: process, characterization, and optical simulation,” J. Appl. Phys. 97, 053101 (2005).
[18] Y. K. Moon, S. I. Jo, K. S. Bae, Y. J. Lee, C. J. Yu, and J. H. Kim, “Stable four-domain twisted nematic structure using stacked alignment layer,” SID Int. Symp. Dig. Tech. Pap. 41, 1748–1750 (2010).
[19] A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Int. Symp. Dig. Tech. Pap. 29, 1077–1081 (1998).
[20] S. B. Park, J. Lyu, Y. Um, H. Do, S. Ahn, K. Choi, K. H. Kim, and S. S. Kim, “A novel charge-shared S-PVA technology,” SID Int. Symp. Dig. Tech. Pap. 38, 1252–1254 (2007).
[21] M. Kubo, T. Miyashita, N. Nagashima, and E. Nishimura, “Development of high performance ASV LCDs using continuous pinwheel alignment (CPA) mode,” Sharp Technical Journal, no. 80, 11–14, (2001).
CH2
[1] D. K. Yang, S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, New York, 2006).
[2] P. Yeh, C. Gu, Optics of Liquid Crystal Displays (John Wiely & Sons, Canada, 2010).
[3] J. H. Lee, D. N. Liu, and S. T. Wu, Introduction to Flat Panel Displays (John Wiely & Sons, Chichester, 2008).
[4] C. H. Gooch and H. A. Tarry, “Optical characteristics of twisted nematic liquid-crystal films,” Electron. Lett. 10, 2–4 (1974).
[5] K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa and M. Sakamoto, Alignment Technologies and Applications of Liquid Crystal Devices (Taylor & Francis, Canada, 2005).
[6] E. Jakeman and E. P. Raynes, “Electro-optics response times of liquid crystal,” Phys. Lett. A 39, 69–70 (1972)
[7] I. C. Khoo, and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993).
[8] J. S. Patel and G. B. Cohen, “Inverse twisted nematic liquid-crystal device,” Appl. Phys. Lett. 68, 3564–3566 (1996)
[9] S. W. Suh, S. T. Shin, and S. D. Lee, “Novel electro-optic effect associated with a homeotropic to twisted–planar transition in nematic liquid crystals,” Appl. Phys. Lett. 68, 2819–2821 (1996)
[10] C. Y. Hsien and S. H. Chen, “Dynamical behavior of a bistable chiral quasi-homeotropic liquid crystal cell,” Appl. Phys. Lett. 83, 1110–1112 (2003)
[11] J. Xue and T. Scheffer, “Self-Compensating, Quasi-Homeotropic Liquid Crystal Device,” SID Int. Symp. Dig. Tech. Pap. 38, 1248–1251 (2007)
[12] S. T. Wu, C. S. Wu, and K.W. Lin, ”Chiral-homeotropic liquid crystal cells for high contrast and low voltage displays ,” J. Appl. Phys. 82, 4795–4799 (1997).
[13] W. Zhao, C. Xu Wu, and M. Iwamoto, ”Weak boundary anchoring, twisted nematic effect, and homeotropic to twisted-planar transition,” Phys. Rev. E 65, 031709 (2002).
[14] T. Rasing, I. Muševič, Surfaces and Interfaces of Liquid Crystals (Springer, New York, 2004)
[15] J. Chen and P. J. Bos, D. R. Bryant, D. L. Johnson, S. H. Jamal, and J. R. Kelly, “Simple four-domain twisted nematic liquid crystal display,” Appl. Phys. Lett. 67, 1990–1992 (1995).
[16] J. Chen, P. J. Bos, D. L. Johnson, D. R. Bryant, J. Li, S. H. Jamal, and J. R. Kelly, “Four-domain twisted nematic liquid crystal display fabricated by reverse rubbed polyimide process,” J. Appl. Phys. 80, 1985–1990 (1996)
[17] S. Varghese, G.P. Crawford, and C. W. M. Bastiaansen, D. K. G. de Boer and D. J. Broer, “High pretilt four-domain twisted nematic liquid crystal display by microrubbing: Process, characterization, and optical simulation,” J. Appl. Phys. 97, 053101 (2005)
[18] Y. K. Moon, S. I. Jo, K. S. Bae, Y. J. Lee, C. J. Yu, and J. H. Kim, “Stable Four-domain Twisted Nematic Structure using Stacked Alignment Layer,” SID Int. Symp. Dig. Tech. Pap. 41, 1748–1750 (2010)
[19] Y. J. Lee, J. S. Gwag, Y. K. Kim, S. I. Jo, S. G. Kang, Y. R. Park, and J. H. Kim, “Control of liquid crystal pretilt angle by anchoring competition of the stacked alignment layers,” Appl. Phys. Lett. 94, 041113 (2009).
[20] A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, K. Okamoto, “A Super-High Image Quality Multi-Domain Vertical Alignment LCD by New Rubbing-Less Technology,” SID Int. Symp. Dig. Tech. Pap. 29, 1077–1080 (1998)
[21] A. Lien, R.Nunes, R.A.John, E. Galligan, E. Colgan, J.Wilson and C.Cai, “Ridge and Fringe_Field Multi-Domain Homeotropic LCD,” SID Int. Symp. Dig. Tech. Pap. 29, 1123–1126 (1998)
[22] Y. Tanaka, Y. Taniguchi, T. Sasaki, A. Takeda, Y. Koibe, K. Okamoto, “ A new design to improve performance and simplify the manufacturing process of high-quality MVA TFT-LCD panels, ” SID Int. Symp. Dig. Tech. Pap. 30, 206–209 (1999)
[23] S. Kataoka, A. Takeda, H. Tsuda, and Y. Koike, H. Inoue and T. Fujikawa, T. Sasabayashi and K. Okamoto, “A new MVA-LCD with jagged shaped pixel electrodes,” SID Int. Symp. Dig. Tech. Pap. 32, 1066–1069 (2001)
[24] E. Lueder, Liquid Crystal Displays: Addressing Schemes and Electro-Optical Effects (Wiley, Chichester, 2010).
[25] S. S. Kim, B. Berkeley, K. H. Kim, J. K. Song., “New technologies for advanced LCD-TV performance,” Journal of the SID, 12, 353–359 (2004).
[26] S. S. Kim, B. H. Berkeley, J. H. Park, T. Kim, D. G. KimSuper, “PVA achieves ultimate LCD-TV performance leadership,” IMID ‘05 Dig. sec.1.1 (2005)
[27] S. B. Park, J. Lyu, Y. Um, H. Do, S. Ahn, K. Choi, K. H. Kim, and S. S. Kim, “A novel charge-shared S-PVA technology,” SID Int. Symp. Dig. Tech. Pap. 38, 1252–1254 (2007)
[28] M. Kubo, T. Miyashita, N. Nagashima, and E. Nishimura, “Development of high performance ASV LCDs using continuous pinwheel alignment (CPA) mode,” Sharp Technical Journal, no. 80, 11–15 (2001).
[29] Y. Ishii, S. Mizushima, and M. Hijikigawa, “High performance TFT LCDs for AVC applications,” SID Int. Symp. Dig. Tech. Pap. 32, 1090–1093 (2001).
[30] S.Y. Cho, C. S. Lee, H. S. Park, J. W. Choi and T. Won, “Comparison of continuous pinwheel alignment (CPA) mode with conventional VA mode in terms of electrical optical properties, IDW’06, 211 (2006).
[31] S. Y. Cho, T. Y. Won, “Optimization of LCD pixel structure for continuous pinwheel alignment (CPA) Mode,” Mol. Cryst. Liq. Cryst. 476, 197–212 (2007).
[32] S. Varghese, G. P. Crawford, C. W. M. Bastiaansen, D. K. G. de Boer and D. J. Broer, “Four-domain twisted vertically aligned liquid crystal pixels using microrubbing,” Appl. Phys. Lett. 86, 181914 (2005).
[33] N. Yamada, S. Kohzaki, E Funada, K. Awane. “Axially symmetric aligned microcell (ASM) mode: electro-optical characteristics of new display mode with excellent wide viewing angle,” SID Int. Symp. Dig. Tech. Pap. 26, 575–578 (1995).
[34] Y. Kume, N. Yamada, S. Kozaki, H. Kishishita, F. Funada, M. Hijikigawa, “Advanced ASM mode (axially symmetric aligned microcell mode): improvement of display performances by using negative dielectric liquid crystal,” SID Int. Symp. Dig. Tech. Pap. 29, 1089–1092 (1998).
[35] S. H. Park, I. S. Song, W. C. Kim, S. T. Oh, and S. H. Lee, “Locked super homeotropic liquid crystal mode with wide viewing angle using patterned polymer” IDRC’04, sec. P-173 (2004).
[36] Y. M. Jeon, S. H. Park, M. H. Lee, J. M. Rhee and S. H. Lee, “Dynamics of locked super homeotropic mode depending on size and shape of patterned polymer,” IDW’05, sec. LCTp1-8, pp.123 (2005).
[37] S. G. Kim, S. T. Oh, G. D. Lee, J. I. Han, C. J. Lee, and S. H. Lee, “ Dynamic stability of vertically aligned LC mode using polymer walls through an oblique electric field,” SID Int. Symp. Dig. Tech. Pap. 37, 394–397 (2006).
[38] S. M. Kim, S. G. Kim, Y. S. Kim, H. K. Lee, M. H. Lee, G. D. Lee, J. J. Lyu, K. H. Kim, and S. H. Lee, “ Control of liquid crystal director through defined pretilt angle in vertical alignment mode surrounded by polymer wall,” SID Int. Symp. Dig. Tech. Pap. 38, 742–744 (2007).
[39] S. G. Kim, Y. S. Kim, A. K. Srivastava, S. T. Oh, G. D.Lee, and S. H. Lee, “Improvement of voltage-dependent dynamics through an oblique electric field in vertically aligned liquid crystal director surrounded by patterned polymer walls,” Current Applied Physics 8 , 142–145 (2008).
[40] H. Lee, S. H. Park, M. H. Lee, and S. T. Oh, G. D. Lee, “Homeotropically aligned nematic liquid crystal device locked by a polymer wall with wide viewing angle,” Appl. Phys. Lett. 86, 031108 (2005).
[41] R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. A. 31, 488–493 (1941).
[42] I. J. Hodgkinson and Q. H. Wu, Birefringent thin films and polarizing elements (World Scientific, Singapore, 1997).
[43] A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).
[44] D.O. Smith, “Magneto-optical scattering from multilayer magnetic and dielectric films”, Optica Acta 12, 13–46 (1965).
[45] D.W. Berreman, “Optics in stratified and anisotropic media: 4×4-matrix formulation”, J. Opt. Soc. Am. 62, 502–510 (1972).
[46] P. Yeh, “Extended Jones matrix method,” J. Opt. Soc. Am. 72, 507–513 (1982).
[47] C. Gu, and P. Yeh, “Extended Jones matrix method. II,” J. Opt. Soc. Am. A 10, 966–973 (1993).
CH3
[1] J. Chen, P. J. Bos, D. R. Bryant, D. L. Johnson, S. H. Jamal, and J. R. Kelly, “Simple four-domain twisted nematic liquid crystal display,” Appl. Phys. Lett. 67, 1990–1992 (1995).
[2] S. Varghes, G. P. Crawford, C. W. M. Bastiaansen, D. K. G. De Boer, and D. J. Broer, “Microrubbing technique to produce high pretilt multi-domain liquid crystal alignment,” Appl. Phys. Lett. 85, 230–232 (2004).
[3] S. Varghes, G. P. Crawford, C. W. M. Bastiaansen, D. K. G. De Boer, and D. J. Broer, “High pretilt four-domain twisted nematic liquid crystal display by microrubbing: process, characterization, and optical simulation,” J. Appl. Phys. 97, 053101 (2005).
[4] Y. K. Moon, S. I. Jo, K. S. Bae, Y. J. Lee, C. J. Yu, and J. H. Kim, “Stable four-domain twisted nematic structure using stacked alignment layer,” SID Int. Symp. Dig. Tech. Pap. 41, 1748–1750 (2010).
[5] A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Int. Symp. Dig. Tech. Pap. 29, 1077–1080 (1998).
[6] K. H. Kim, K. H. Lee, S. B. Park, J. K. Song, S. N. Kim, and J. H. Souk, Domain divided vertical alignment mode with optimized fringe field effect, Asia Display’98 Digest, 383–386 (1998).
[7] J. Jin, The Finite Element Method in Electromagnetics (John Wiley & Sons, New York, 2002).
[8] S. T. Wu, C. S. Wu, K. W. Lin, “Chiral-homeotropic liquid crystal cells for high contrast and low voltage displays,” J. Appl. Phys. 82, 4795–4799 (1997).
[9] W. Zhao, C. X. Wu, and M. Iwamoto, “Weak boundary anchoring, twisted nematic effect, and homeotropic to twisted-planar transition,” Phys. Rev. E 65, 031709 (2002).
[10] P. Yeh, C. Gu, Optics of Liquid Crystal Displays (John Wiely & Sons, Canada, 2010).
[11] C. H. Gooch and H. A. Tarry, “Optical characteristics of twisted nematic liquid-crystal films,” Electron. Lett. 10, 2–4 (1974).
[12] C. H. Gooch and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles ≦90o,” Appl. Phys. 8, 1575–1584 (1975).
[13] S. T. Wu, C. S. Wu, “Mixed-mode twisted-nematic cell for transmissive liquid crystal display,” Displays 20, 231–236 (1999).
[14] S. W. Suh, J. S. Patel, S. D. Lee, “Reflective homeotropic mode in a twisted nematic liquid crystal,” Appl. Phys. Lett. 73, 1062–1064 (1998).
[15] C. K. Wei, Y. H. Lu, C. L. Kuo, C. Y. Liu, H. D. Liu, W. C. Chang, H. P. Huang, C. M. Cheng, and D. C. Yan, “Wide-viewing-angle polymer stabilized homeotropically aligned LCD,” SID Int. Symp. Dig. Tech. Pap. 29, 1080–1083 (1998).
[16] H. Yoshida, Y. Tasaka, Y. Tanaka, H. Sukenori, Y. Koike and K. Okamoto, “MVA LCD for notebook or mobile PCs with high transmittance, high contrast ratio, and wide angle viewing,” SID Int. Symp. Dig. Tech. Pap. 35, 6–9 (2004).
CH4
[1] D. de Rossi and J. Robert, “Electro-optic behavior of a field-induced twisted structure with quasihomeotropic boundary conditions,” J. Appl. Phys. 49, 1139–1143 (1978).
[2] S. W. Suh, S. T. Shin, and S. D. Lee, “Novel electro-optic effect associated with a homeotropic to twisted–planar transition in nematic liquid crystals,” Appl. Phys. Lett. 68, 2819–2822 (1996).
[3] S. W. Suh, S. T. Shin, and S. D. Lee, “Homeotropic to twisted planar transition in nematic liquid crystals with negative dielectric amsotropy,” Mol. Cryst. Liq. Cryst. 302, 163–168 (1997).
[4] S. T. Wu, C. S. Wu, and K. W. Lin, ” Chiral-homeotropic liquid crystal cells for high contrast and low voltage displays,” J. Appl. Phys. 82, 4795–4799 (1997).
[5] S. Varghese, G. P. Crawford, C. M. Bastiaansen, D. K. G. de Boer, and D. J. Broer, “Four-domain twisted vertically aligned liquid crystal pixels using microrubbing,” Appl. Phys. Lett. 86, 181914 (2005).
[6] W. Zhao, C. X. Wu, and M. Iwamoto, “Weak boundary anchoring, twisted nematic effect, and homeotropic to twisted-planar transition,” Phys. Rev. E 65, 031709 (2002).
[7] C. C. Peng, K. C. Hsu, J. J. Wu, S. H. Fan, H. T. Lee and Y. Shen, “High transmittance of a twisted-vertical aligned liquid crystal display,” J. Appl. Phys. 108, 113103 (2010).
[8] S. Kataoka, A. Takeda, H. Tsuda, Y. Koike, H. Inoue, T. Fujikawa, T. Sasabayashi, and K. Okamoto, “A new MVA-LCD with jagged shaped pixel electrodes,” SID Int. Symp. Dig. Tech. Pap. 32, 1066–1069 (2001).
[9] H. Yoshida, Y. Tasaka, Y. Tanaka, H. Sukenori, Y. Koike, and K. Okamoto, “MVA LCD for notebook or mobile PCs with high transmittance, high contrast ratio, and wide angle viewing,” SID Int. Symp. Dig. Tech. Pap. 35, 6–9 (2004).
[10] Y. J. Lee, Y. K. Kim, S. I. Jo, K. S. Bae, B. D. Choi, J. H. Kim, and C. J. Yu, “Fast vertical alignment mode with continuous multi-domains for a liquid crystal display,” Opt. Express 17, 23417–23422 (2009).
[11] S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “ Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90, 261910 (2007).
CH5
[1] M. Shibazaki, T. Ishinabe, T. Miyashita, T. Uchida and T. Sunata, “New concept of the wide viewing angle liquid crystal display without grayscale inversion,” Jpn. J. Appl. Phys. 40, L1373–L1376 (2001).
[2] M. Shibazaki, M. Sugiyama, S. Takahashi, M. Yoshiga, and T. Inada, “MVA mode with improved color-wash-out for mobile application,” SID Int. Symp. Dig. Tech. Pap. 38, 1665–1668 (2007).
[3] S. S. Kim, B. H. Berkeley, K. H. Kim, J. K. Song, “New technologies for advanced LCD-TV performance,” Journal of the SID 12, 353–359 (2004).
[4] S. S. Kim, B. H. Berkeley, J. H. Park, T. Kim, “New era for TFT-LCD size and viewing-angle performance,” Journal of the SID 14, 127–134 (2006).
[5] S. B. Park, J. Lyu, Y. Um, H. Do, S. Ahn, K. Choi, K. H. Kim, and S. S. Kim, “A novel charge-shared S-PVA technology,” SID Int. Symp. Dig. Tech. Pap. 38, 1252–1254 (2007).
[6] C. C. Peng, K. C. Hsu, J. J. Wu, S. H. Fan, H. T. Lee and Y. Shen, “Wide-viewing angle twisted-vertical alignment liquid crystal cells without disclination lines,” Displays 31, 210–215 (2010).
[7] C. C. Peng, K. C. Hsu, J. J. Wu, S. H. Fan, H. T. Lee and Y. Shen, “High transmittance of a twisted-vertical aligned liquid crystal display,” J. Appl. Phys. 108 , 113103 (2010).
[8] R. Lu, Z. Ge, and S. T. Wu, “Wide-view and single cell gap transflective liquid crystal display using slit-induced multidomain structures,” Appl. Phys. Lett. 92, 191102 (2008).
[9] X. Zhu, Z. Ge, and S. T. Wu, “Analytical solutions for uniaxial-film-compensated wide-view liquid crystal displays,” J. Disp. Technol. 2, 2–20 (2006).
[10] R. Lu, S. T. Wu, and S. H. Lee, “Reducing the color shift of a multidomain vertical alignment liquid crystal display using dual threshold voltages,” Appl. Phys. Lett. 92, 051114 (2008).
[11] J. Ma, Y. C. Yang, Z. Zheng, J. Shi, and W. Cao, “A multi-domain vertical alignment liquid crystal display to improve the V–T property,” Displays 30, 185–189 (2009).
[12] C. Y. Liu, and L. H. Chang, “A new method for off-axis image color shift evaluation,” Proc. of ASID ’06, 318 (2006).
CH6
[1] S. T. Wu, “Nematic liquid crystalmodulator with response time less than 100 μs at room temperature,” Appl. Phys. Lett. 57, 986–988 (1990).
[2] R. I. McCartney, “A liquid crystal display response time compensation feature integrated into an LCD panel timing controller,” SID Int. Symp. Dig. Tech. Pap. 34, 1350–1353 (2003).
[3] K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, Y. Koike, and K. Okamoto, “A new MVA-LCD by polymer sustained alignment technology,” SID Int. Symp. Dig. Tech. Pap. 35, 1200–1203 (2004).
[4] C. Y. Huang, W. Y. Jhuang and C. T. Hsieh, “Switching of polymer-stabilized vertical alignment liquid crystal cell,” Opt. Express 16, 3859–3864 (2008).
[5] Y. J. Lee, Y. K. Kim, S. I. Jo, J. S. Gwag, C. J. Yu, and J. H. Kim, “Surface-controlled patterned vertical alignment mode with reactive mesogen,” Opt. Express 17, 10298–10303 (2009).
指導教授 徐桂珠(Kuei-Chu Hsu) 審核日期 2011-5-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明