博碩士論文 91322023 詳細資訊


姓名 石鋕堂(chih-tang shin)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 光纖光柵感測系統在軌道監測上的應用
(Real Time Monitoring of Track Deformation by Fiber Bragger Grating Sensors)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究採用品質穩定且可進行動態行為監測的無溫度效應式光纖光柵感測器(A-thermal Fiber Bragger Grating,FBG)作為軌道即時變形行為之主要監測儀器,配合所開發之軌道變形計算軟體,建構以光纖感測器為主體之軌道安全監測系統,經實驗室的基本性質試驗,掌握光纖光柵感測器基本特性之後,進一步完成現地運用的安裝與測試,量測結果顯示光纖光柵感測器之訊號清晰、靈敏、穩定,可作為軌道變形及安全監洌之有效方式,本研究建構了一套完整之軌道安全預警監測之工法及軟、硬體系統,具有持續開發應用之潛力。
摘要(英) A-thermal type Fiber Bragger Grating sensors based on innovative fiber-optical technologies were adopted to study the track deformation behaviors. With the deformation calculating software developed from this research, the deformation shape of the rail tracks can be detected. After experiments in the laboratory to identify basic properties of the sensing devices, installation and testing of the monitoring system were carried out in field. Monitoring results demonstrate that this FBG type track safety monitoring is durable and can provide sensitive, clear, and stable signals for long term monitoring. It is believed that the technology developed from this research including the software and hardware has great potential for further development and application on the safety monitoring of track system.
關鍵字(中) ★ 監測
★ 光纖光柵感測器
★ 軌道變形
★ 安全預警
關鍵字(英) ★ track deformation
★ fiber Bragger grating sensor
★ monitoring
★ safety warning
論文目次 第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究目標 3
1.3 智能結構監測 4
1.4 論文架構 5
第二章 光纖應變感測器 7
2.1 相位調變 7
2.1.1 Fabry-Perot干涉式光纖感測器 8
2.1.2 低干涉式光纖感測器 8
2.2 光強度調變 8
2.2.1 布里淵光時域反射感測器 9
2.3 波長調變 10
2.3.1 光纖光柵感測器 10
第三章 光纖光柵感測系統 12
3.1 原理簡介 12
3.2 光纖光柵感測器之溫度與應變量測系統 17
3.2.1 參考值FBG法 17
3.2.2 雙波長FBG疊加法 17
3.2.3 FBG與LPG結合法 18
3.2.4 FBG與EFPI混合法 18
3.2.5 雙直徑FBG法 19
3.2.6 A-Thermal光纖光柵感測器 20
3.3 性能驗證 22
3.3.1 光纖光柵感測器之特性驗證(未披覆保護者-裸光纖) 22
3.3.2 A-Thermal光纖光柵感測器特性驗證 24
第四章 軌道安全監測系統 27
4.1 軌道變形機制 27
4.2 軌道安全監測之基本構想與建制 29
4.3 變形計算原理 32
4.4 現地軌道安全監測系統之可行性研究 43
4.5 軌道絕緣接頭 46
4.6 現地軌道安全監測系統之規劃 47
4.7 軌道安全監測系統之實作 50
第五章 軌道安全監測系統使用說明 52
5.1 系統規格說明 52
5.2 監測軟體畫面說明 54
5.3 設定功能說明 57
第六章 軌道安全監測預警 64
6.1 軌道檢測車與軌道變形監測 64
6.2 軌道安全預警評估 67
6.3 軌道安全預警研究 70
第七章 監測結果與討論 74
7.1 運作情形 74
7.2 初步成果 74
第八章 結論與建議 78
8.1 結論 78
8.2 建議 81
參考文獻
附表
附圖
表目錄
表1.1-1傳統感測技術與光纖感測技術比較表 86
表2.2-1 光纖價格及精度一覽表 87
表3.2-1 光纖光柵感測器基本規格 88
表4.2-1 FOMS2000ASP相關規格 88
表4.4-1 變形試驗之1/4點變位 89
表4.4-2 變形試驗之1/2點變位 89
表4.4-3 變形試驗之3/4點變位 89
表5.1-1 FOMS2000ASP產品規格 90
表6.2-1 國內軌道幾何不整容許標準 91
圖目錄
圖1.1-1 造橋路段事故現場圖 92
圖1.1-2 花東線軌道變形現場圖 92
圖3.1-1 光纖結構示意圖 93
圖3.1-2 光柵光纖感測器 93
圖3.2-1 雙直徑FBG應變及溫度同時感測法 94
圖3.2-2 FBG反射光譜圖 94
圖3.3-1 純鋁板試體圖 95
圖3.3-2 實驗室鋁板試體配置 95
圖3.3-3 實驗室拉力試驗現場 95
圖3.3-4 應變計應變與拉力圖 96
圖3.3-5 光纖光柵波長飄移量與拉力圖 96
圖3.3-6 光柵理論應變量與試體理論應變比較圖 97
圖3.3-7 應變靈敏度分析法一 97
圖3.3-8 應變靈敏度分析法二 98
圖3.3-9 量測應變裝置圖 98
圖3.3-10 應變-波長關係圖 99
圖3.3-11 量測溫度裝置 99
圖3.3-12 溫度-波長關係圖 100
圖3.3-13 受力狀態下波長-時間關係圖 100
圖3.3-14 應變-波長關係圖 101
圖3.3-15 溫度-波長關係圖 101
圖3.3-16 溫度-波長關係圖 102
圖3.3-17 應變鬆弛試驗結果 102
圖4.1-1 軌道受力示意圖 103
圖4.2-1 光纖感測系統基本架構 103
圖4.2-2 A-Thermal光纖光柵感測器 104
圖4.2-3 FOMS2000ASP監測系統 104
圖4.2-4 電腦控制系統 105
圖4.3-1 由三個感測器應變值解出斷面內力 105
圖4.3-2 變形量測分析原理 106
圖4.3-3 連續梁單元分解圖 107
圖4.3-4 假設之連續梁光纖感測器位置 107
圖4.4-1 台鐵50N鋼軌斷面尺寸圖 108
圖4.4-2 軌道變形實驗佈設圖 108
圖4.4-3 軌道變形量測之實驗佈置及加載系統 109
圖4.4-4 軌道變形之加載系統 109
圖4.4-5 鋼軌底部之支稱細部照片 110
圖4.4-6 變形試驗之1/4點變位曲線圖 110
圖4.4-7 變形試驗之1/2點變位曲線圖 111
圖4.4-8 變形試驗之3/4點變位曲線圖 111
圖4.4-9 光纖光柵感測器裝置完成圖 112
圖4.5-1 軌道絕緣接頭施工之鑽孔技術流程 112
圖4.6-1 列車出軌情形 118
圖4.6-2 實驗室參考之監測系統架構圖 118
圖4.6-3 現場探勘及監測系統規劃 119
圖4.6-4 軌道安全監測系統構想示意圖 119
圖4.7-1 現地軌道安全監測規劃(1) 120
圖4.7-2 現地軌道安全監測規劃(2) 120
圖4.7-3 固定距離方塊與保護盒 121
圖4.7-4 光纖式溫度計及其固定 121
圖4.7-5 光纖光柵感測器軌道現場佈設流程 122
圖4.7-6 光纖光柵感測器配置側視圖 130
圖4.7-7 施工完成後之軌道變形監測系統 131
圖5.1-1感測器規格 131
圖5.2-1 桌面圖示 132
圖5.2-2 程式開始執行視窗 132
圖5.2-3 選擇”Stop”後之視窗 133
圖5.2-4 程式”Run”執行視窗 133
圖5.2-5 RS232程式所在視窗 134
圖5.2-6 RS232程式開始運作 134
圖5.2-7 檔案儲存格式 135
圖6.1-1 軌道維修管理流程 135
圖6.1-2 台北市捷運軌道維修檢測車 136
圖6.2-1 軌道變形之安全預警 136
圖6.2-2 軌道不整之高低 137
圖6.2-3 軌道不整之方向 137
圖6.2-4 軌道不整之平面性 137
圖6.2-5 軌道不整之軌距 138
圖6.2-6 軌道不整之水平 138
圖6.2-7 軌道安全監測系統資料處理流程與安全評估 139
圖6.3-1 算例一架構圖 140
圖6.3-2 於不同取點數下之相對變形圖 140
圖6.3-3 算例二架構圖 141
圖6.3-4 於不同取點數下之相對變形圖 141
圖6.3-5 算例一最小二乘法計算結果 142
圖6.3-6 算例二最小二乘法計算結果 142
圖7.1-1 光纖光柵斷裂情形 143
圖7.1-2 光纖光柵維修情形 143
圖7.2-1 溫度變化圖 143
圖7.2-2 CH1各Gauge之應變變化情形 144
圖7.2-3 CH2各Gauge之應變變化情形 144
圖7.2-4 CH3之各Gauge之應變變化情形 145
圖7.2-5 光纖光柵感測器配置圖 145
圖7.2-6 光纖光柵感測系統維修後示意圖 145
圖7.2-7 列車經過之動態應變反應 148
圖7.2-8 長期監測中之列車行經反應 148
圖7.2-9 溫度變化與應變關係圖 149
圖7.2-10 溫度歷時曲線 149
圖7.2-11 道碴道床與混凝土道床之長期應變差異 150
圖7.2-12 軌道單日溫度變化圖 150
圖7.2-13 軌道單日應變變化圖 150
圖7.2-14 軌道溫度及軌道應變之線性關係 150
圖7.2-15 不同溫度下之各點軸向應變圖 151
圖7.2-16 不同溫度下之垂直向變形 151
圖7.2-17 不同溫度下之側向變位 151
參考文獻 1. 財團法人中興工程顧問社,「高速鐵路關鍵技術研究(1)-橋梁設計參數、豎向震動、縱向力」,民國87年4月。
2. 吳嘉原,「橋梁監測之感測技術」,民國91年6月。
3. Mason, B., Valis, T., Hogg, D., “Commercialization of Fiber-optic Strain Gauge Systems”, Fiber optic and laser sensors X, Boston, MA, Sept. 8-11, 1992, SPIE Vol. 1795, pp.215-222.
4. Inaudi D., A. Elamari, L. Pflug, N. Gisin, J. Breguet, “Low Coherence deformation sensors for the monitoring of civil engineering structures”, to be published in Sensors and Actuators A, Vol. 44, 1994, pp. 168-171.
5. Udd, E., “Fiber Optic Sensors”, Wiley, 1991.
6. Udd, E., “Fiber Optic Smart Structures”, Wiley, N. Y., 1995.
7. A. Kersey, “Optical Fiber Sensors: Optical Measurement techniques and applications”, P. K. Rastogi editor, Artech House, pp.217-254, 1977.
8. Ferdinaud P. et al. “Application of Bragg Grating Sensors in Europe”, 12th International Conference on OFS, 1997 - Optical Fiber sensors, Williamsbourg, OSA Technical Digest Series, Vol. 16, pp. 14-19, 1977.
9. S. B. Chase, “Managing an Aging Highway Infrastructure: The Changing Role of Nondestructive Evaluation Technologies”, Proceedings of SPIE’s International Symposium on Nondestructive Evaluation Technologies for Aging Infrastructure & Manufacturing, 1998.
10. W. W. Morey, "Fiber Optic Grating Technology", Proceedings of SPIE, Vol. 2574, p. 22, 1995.
11. J. Dakin, "Distributed Fiber Optic Sensors", in Fiber Optic Smart Structures, edited by E. Udd, Wiley, 1995.
12. 交通部,「光纖分佈式橋梁及高架道路結構監測技術開發計畫」,民國87年7月。
13. Hill K. O., Y. Fujii, D. C. Johnson, and B, Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection fiber fabrication”, Apl. Phys. Lett. 32(10), p647, 1978.
14. G. Meltz, W. W. Money, and W. H. Glem,”Formation of Bragg grating in optical fibers by a transverse holographic method” Opt. Lett. 14(15), P189, 1989.
15. M A Davis, A D Kersey, J Sirkis and E J Friebele, “Shape and vibration mode sensing using a fiber optic Bragg grating array”, 1996.
16. D Inaudi, S Vurpillot, N Casanova and P Kronenberg, “Structural monitoring by curvature analysis using interferometric fiber optic sensors”, 1997.
17. Volker Slowik, Evelyn Schlattner, Thomas Klink, ”Fibre Bragg Grating Sensors in Concrete Technology”, p109-120, LEIPZIG ANNUAL CIVIL ENGINEERING REPORT, No.3 – 1998, ISSN 1432-6590.
18. Whitten L. Schulz, Eric Udda, John M. Seima, and Galen E. McGillb, ”Advanced fiber grating strain sensor systems for bridges, structures, and highways”, Blue Road Research, 2555 NE 205th Ave, Fairview, OR 97024 Oregon Department of Transportation, Research Unit, 2950 State Street, Salem, OR 97310.
19. Hideaki Iwaki, Hiroshi Yamakawa, Akira Mita, ”Health Monitoring System Using FBG-Based Sensors for a 12-Story Building with Column Dampers”, 8th SPIE International Symposium of Smart Structures and Materials, Newport Beach, USA, 4-8/Mar., 2001.
20. Werner Lienhart, Fritz K. Brunner, “MONITORING OF BRIDGE DERORMATIONS USING EMBEDDED FIBER OPTICAL SENSORS”, Graz University of Technology, Engineering Geodesy and Measurement Systems, Steyrergasse 30, 800 Cnaz, Austria, 2003.
21. 黃民仁、陳鴻麟,「鐵路橋梁安全檢查、評估與管理」,台鐵資料月刊302,民國88年12月,pp.106-140。
22. 財團法人中興工程顧問社,「高速鐵路關鍵技術研究(1)-橋梁設計參數、豎向震動、縱向力」,民國87年4月。
23. 黃民仁,「鐵路工程學」,pp.209-245。
24. Transportation Research Board, National Research Council “Innovations Deserving Exploratory Analysis Programs: New IDEAS for High-Speed Rail”, Jan. 2002.
25. Allan M. Zarembski, John G. Bell, “Limiting the Effects of High-Speed Dynamic Forces on Track Structure”, TR NEWS, pp.25, Sept. 2002.
26. “Five-Year Strategic Plan for Railroad Research, Development, and Demonstrations”, Federal Railroad Administration, U.S. Dept. of Transportation, sec. 4.4, Mar. 2002.
27. Anders Ekberg, Railway Mechanics established at Chalmers University of Technology,“Lateral Buckling of Tracks”, July 1999.
28. Daniele Inaudi, Nicoletta Casanova, Pascal Kronenberg, Samuel Vurpillot,“Railway bridge monitoring during construction and sliding”, SPEI Conference on Smart Structures and Materials, 5-6.03. 1997, San Diego USA.
29. “Joint Track-Related Research with the Association of American Railroads”, Transportation Technology Center, Inc. Project D-07, FY 99.
30. 潘治良,「光纖光柵感測器於實尺寸橋梁監測之應用」,國立台灣大學土木工程研究所碩士論文,pp15-50,2001。
31. H. Patrick, et al., Inter. J. Optoelectonics 9, pp281-283, 1994.
32. M.G. Xu, et al., Elect. Letts., 30, pp1085-1087, 1994.
33. H. Patrick, et al., IEEE Photon. Techn. 8(9), pp1233-1225, 1996.
34. T.Lin, et al., SPIE Vol. 3042, pp203-211, 1997.
35. James S. W., et al., Electronics Letters, Vol. 22, Vol. 32 Issue 12,6 Jane, 1996.
36. Jaehoon Jung, et al., “Simultaneous measurement of strain and temperature using a single FBG grating with erbium-dopped fiber amplifier”.
37. Sotiris E Kanellopouslos, Optics Letters, Vil. 20, Issue 3, p333, 1995.
38. 廖慶隆,「軌道運動理論與軌道不整之應用」,土木水利工程學刊,PP49~53,2004。
指導教授 王仲宇(Chung-Yue Wang) 審核日期 2004-12-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡