博碩士論文 91322033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.225.149.32
姓名 王尹廷(Yin-Ting Wang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 鹼-骨材反應引致裂縫之量測與分析
(The measurement and analysis of crack induced by AAR)
相關論文
★ 花蓮溪安山岩含量之悲極效應研究★ 層狀岩盤之承載力
★ 海岸山脈安山岩之鹼-骨材反應特性及抑制方法★ 集集大地震罹難者居住建築物特性調查分析
★ 岩石三軸室應變量測改進★ 傾斜互層地層之承載力分析
★ 花蓮溪安山岩骨材之鹼反應行為及抑制方法★ 混成岩模型試體製作與體積比量測
★ 台灣骨材鹼反應潛能資料庫建置★ 平台式掃描器在影像擷取及長度量測之應用
★ 溫度及鹽水濃度對壓實膨潤土回脹性質之影響★ 鹼骨材反應引致之破裂行為
★ 巨觀等向性混成岩製作表面影像與力學性質★ 膨潤土與花崗岩碎石混合材料之熱傳導係數
★ 邊坡上基礎承載力之數值分析★ 熱探針連續量測法應用於緩衝材料熱傳導係數之量測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
目前各國對於鹼-骨材反應的判斷規範,多以量測試體外部的膨脹量作為骨材是否具有反應潛能的依據,如砂漿棒(ASTM C227)或混凝土角柱(ASTM C1293),最後獲得的僅為試體的長度變化;對於反應造成的裂縫行為及發展過程並無有效的記錄。本文採用台東宜灣安山岩及花蓮和平溪骨材製作混凝土試體,在不同齡期以平台式掃描器來擷取混凝土板表面影像以記錄裂縫生長的過程,並配合影像軟體分析,建立膨脹量與裂縫的關係。
經觀測後發現裂縫呈現不規則地圖狀,與發生鹼-骨材反應的現地混凝土結構物表面類似。裂縫大多先由砂漿開始並沿著骨材周圍生長,部分裂縫甚至貫穿骨材。而在膨脹量的量測上,使用影像分析與多點式應變規得到的數據雖然有些微的差異,不過趨勢大致相同,顯示經由記錄影像的方式來量測膨脹量是可行的。並由裂縫分析結果發現,膨脹量與裂縫面積可以迴歸出良好的線性關係。
摘要(英) ABSTRACT
Generally, standard test methods for potential alkali activity is to measure the expansion of specimens, mortar bars(ASTM C227) or concrete prisms(ASTM C1293), for instance. It just shows the change in total length of the specimen, but the behavior and development of cracks can not be investigated. In this article, the relationship between expansion and crack of the specimens is established with image measurement. So scanner is used to record the surface image of concrete plates which are made of andesite and aggregate from Heping river. The image is analyzed with software, Simple PCITM, to give the quantitative description of the cracks and expansion.
The results indicate that the surface crack is map-like, similar to those observed from in-situ concrete structures and development of cracks almost start from mortar part and then extended to aggregate part in concrete specimens, even cut over the aggregate. From the analysis of image, the crack area contributes the most in the total expansion after the first crack. The expansion threshold for cracking to exist on concrete specimen is 0.15%.
關鍵字(中) ★ 膨脹量
★ 影像分析
★ 裂縫
關鍵字(英) ★ Image Measurement
★ Crack
★ Expansion
論文目次 目錄 Ⅰ
圖目錄 Ⅵ
表目錄 ⅩⅡ
照片目錄 ⅩⅣ
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 1
第二章 文獻回顧 3
2-1 前言 3
2-2 混凝土劣化的原因 4
2-3 鹼-骨材反應 5
2-4 鹼-骨材反應的分類 5
2-4-1 鹼-氧化矽反應(Alkali-Silica Reaction) 5
2-4-2 鹼-碳酸鹽反應(Alkali-Carbonate Reaction) 6
2-4-3 鹼-矽酸鹽反應(Alkali-Silicate Reaction) 7
2-5 鹼-骨材反應的特徵 7
2-5-1 外觀方面 7
2-5-2 內部方面 8
2-6 裂縫觀察與量測 12
2-6-1 人工描繪 12
2-6-2 顯微鏡 13
2-6-3 紫外線螢光樹酯輔以UV光法 13
2-6-4 Underwood合金輔以影像分析 15
2-6-5 超音波檢測法 17
2-7 混凝土膨脹量推估 18
2-8 悲極效應簡介 22
2-9 產生悲極效應的因子 23
2-9-1 反應性骨材含量 23
2-9-2 骨材粒徑 24
2-9-3 鹼量 25
2-10 鹼-骨材反應之改善與維修方法 27
2-10-1 鹼-骨材反應之改善 27
2-10-2 鹼-骨材反應之維修方法 28
第三章 實驗計畫與方法 30
3-1 實驗規劃 30
3-2 實驗材料 30
3-2-1 水泥 30
3-2-2 骨材 32
3-2-3 氫氧化鈉 35
3-3 實驗儀器與設備 35
3-4 實驗方法與步驟 43
3-4-1 實驗方法 43
3-4-2 混凝土角柱膨脹試驗法(ASTM C1293) 44
3-4-3 實驗步驟 49
第四章 實驗結果與分析 50
4-1 鹼-骨材反應資料庫補充調查 51
4-2 混凝土板與角柱膨脹量之差異 58
4-3 不同鹼含量對膨脹量的影響 60
第五章 影像量測分析結果 67
5-1 影像量測之介紹 67
5-1-1 膨脹量之量測 68
5-1-2 裂縫長度之量測 70
5-1-3 裂縫寬度之量測 73
5-1-4 平均裂縫寬度 75
5-2 影像掃描法與多點式應變規量測膨脹量之比較 76
5-2-1 影像擷取穩定性對量測精度的影響 76
5-2-2 影像掃描法與多點式應變規量測結果比較 79
5-3 裂縫面積與膨脹量 84
5-4 裂縫面積與膨脹量的關係之應用 92
5-4-1 裂縫面積與膨脹量的關係 92
5-4-2 膨脹量門檻值之建議 93
5-5 裂縫長度與寬度對裂縫面積的影響 99
5-5-1 裂縫長度與寬度對裂縫面積的影響與時間的關係 99 5-5-2 裂縫長度與寬度對裂縫面積的影響與膨脹量的關係 100
5-5-3 裂縫長度與寬度對裂縫面積的關係 100
5-6 鹼-骨材反應特徵觀察 107
第六章 結論與建議 127
6-1 結論 127
6-2 建議 129
參考文獻 130
參考文獻 1.王櫻茂、吳振成、楊宏儀、田永銘、陳裕新,「台灣地區鹼-骨材反應特性之研究」,行政院國科會專題研究報告,NSC78-0410-E006-20,共98頁(1989)。
2.田永銘、王淑慧、潘亮宇、陳維民,「混凝土鹼-骨材反應劣化與防治」,構造物破壞原因探討與處置研討會論文集,台北,第125-150頁(1999)。
3.田永銘、楊世和、王淑慧,「台灣東部骨材鹼反應潛能研究」,中國土木水利工程學刊,第十三卷,第一期,第217~226頁(2001)。
4.田永銘、楊世和、彭柏翰、王淑慧,「台灣的鹼-骨材反應問題與對策」,土木水利,第二十六卷,第一期,第78-94頁(1999)。
5.林晏吉,「花東地區鹼-骨材反應之成因探討」,碩士論文,國立中央大學土木工程學系,中壢(1999)。
6.林志寶,「台灣骨材鹼反應潛能資料庫建置」,碩士論文,國立中央大學土木工程學系,中壢(2002)。
7.侯彥廷,「平台式掃描器在影像擷取及長度量測之應用」,碩士論文,國立中央大學土木工程學系,中壢(2002)。
8.徐豐裕,「鹼-骨材反應引致之破裂行為」,碩士論文,國立中央大學土木工程學系,中壢(2003)。
9.張文恭,「花蓮地區單一岩種之鹼-骨材反應研究」,碩士論文,國立中央大學土木工程學系,中壢(2000)。
10.張庭華,「海岸山脈安山岩之鹼-骨材反應特性及抑制方法」,碩士論文,國立中央大學土木工程研究所,中壢(2001)。
11.彭柏翰,「花蓮溪安山岩含量之悲極效應研究」,碩士論文,國立中央大學土木工程研究所,中壢(2000)。
12.黃兆龍,混凝土品質保證,詹氏書局,台北,第199-222頁(1988)。
13.楊世和,「台灣東部反應性骨材之探討及分析」,碩士論文,國立中央大學土木工程學系,中壢(1997)。
14.詹皇祥,「近景數化影像半自動式混凝土裂縫量測」,碩士論文,國立中央大學土木工程學系,中壢(2001)。
15.ASTM C215-91, “Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Frequencise of Concrete Specimens” Annual Book of ASTM Standards, pp.121-124 (1996).
16.ASTM C227-90, “Standard Test Method for Potential Alkali Reactivity of Cement-Aggregate Combinations(Mortar Bar Method),”Annual Book of ASTM Standards, p.125-129 (1996).
17.ASTM C597-91, “Standard Test Method for Pulse Velocity Through Concrete,” Annual Book of ASTM Standards, pp.286-288 (1996).
18.ASTM C1260-94, “Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method),” Annual book of ASTM Standards, pp. 644-647 (1996).
19.ASTM C1293-95,“Standard Test Method for Concrete Aggregates by Determination of Length Change of Concrete due to Alkali-Silica Reaction,” Annual Book of ASTM Standards, pp.648-653 (1996).
20.Carles-Gibergues, A., and Cyr, M., “Interpretation of expansion curves of concrete subjected to accelerated alkali-aggregate reaction (AAR) test,” Cement and Concrete Research, Vol. 32, pp. 691-700 (2002).
21.Clark, L.A., and Ng, N.E., “The Effect of Alkali-Silica Reaction on Punching Shear Strength of Reinforced Concrete Slabs,” Proceeding 8th International Conference on Alkali-Aggregate Reaction in Concrete, Kyoto, Japan, pp.659-664 (1989).
22.Chengzhi, Z., Aiqin, W., Mingshu T., and Ningsheng Z., “Influence of Dimension of Test Specimen on Alkali-Aggregate Reaction Expansion,” ACI Material Journal, Vol. 96, No. 2, pp. 204-207 (1997).
23.Cyr, M., and Carles-Gibergues, A., “Normalized age applied to AAR occurring in concretes with or without mineral admixtures,” Cement and Concrete Research, Vol. 32, pp. 1771-1782 (2002).
24.Fujii, M., Kobayashi, K., Kojima, T., and Maehara, H., “The Static and Dynamic Behavior of Reinforced Concrete Beams with Cracking Due to Alkali-Silica Reaction,” Proceeding 7th International Conference on Alkali-Aggregate Reaction in Concrete, Ottawa, Canada, pp.126-130 (1987).
25.Fan, S., and Hanson, J.M., “Length Expansion and Cracking of Plain and Reinforced-Concrete Prisms Due to Alkali-Silica Reaction,” ACI Structural Journal, Vol. 95, No. 4, pp. 480-487 (1998).
26.Fan, S., and Hanson, J. M., “Effect of ASR Expansion and Cracking on structural Behavior of Reinforced Concrete Beams,” ACI Structural Journal, Vol. 95, No. 5, pp. 498-505 (1998).
27.Gross, M.R., “Strain accommodated by brittle failure in adjacent units of the Monterey Formation, U.S.A.: scale effects and evidence for uniform displacement boundary condition,” Journal of Structural Geology, Vol. 17, No. 9, pp. 1303-1318 (1995).
28.Hobbs, D.W., Alkali-Silica Reaction in Concrete, Thomas Telford, London, (1988).
29.Jones, A.E.K., and Clark L.A., “The Practicalities and Theory of Using Crack Width Summation to Estimate ASR Expansion.” Proceedings of the Institution of Civil Engineers, Structures and Buildings, Vol. 104, No. 2, pp. 183-192 (1994).
30.Jones, A.E.K., and Clark L.A., “Structural Effect of Alkali-Silica Reaction.” Proceeding 10th International Conference on Alkali-Aggregate Reaction in Concrete, Melbourne, Australia, pp.394-401 (1996).
31.Kobayashi, K., Shiraki, R., and Kawai, K., “Influence of Alkali Concentration and Distribution Occurring in Concrete Members on Expansion Due to Alkali-Silica Reaction,” Proceeding 8th International Conference on Alkali-Aggregate Reaction in Concrete, Kyoto, Japan, pp.641-646 (1989).
32.Katayama,T.,“Petrography of Alkali-Aggregate Reactions in Concrete Reactive Minerals and Reaction Products,” East Asia Alkali-Aggregate Reaction Seminar, Tottori, Japan, (1997).
33.Marrett, R., and Allmendinger, R.W., “Amount of extension on “small” faults : An example from the Viking graben,” Geology, Vol. 20, pp. 47-50 (1992).
34.Marzouk, H., and Langdon, S., “The Effect of Alkali-Aggregate Reactivity on the Mechanical Properties of High and Normal Strength Concrete,” Cement and Concrete Composites, Vol. 25, No. 4, pp. 549-556 (2003).
35.Mo, X., Yu, C., and Xu, Z., “Long-term effectiveness and mechanism of LiOH in inhibiting alkali-silica reaction,” Cement and Concrete Research, Vol. 33, pp. 115-119 (2003).
36.Nishibayashi, S., Yamura, K., and Sakata, K., “Evaluation of Cracking of Concrete Due to Alkali-Aggregate Reaction,” Proceeding 8th International Conference on Alkali-Aggregate Reaction in Concrete, Kyoto, Japan, pp.759-764 (1989).
37.Nemati, K.M., “Preserving microstructure of concrete under load using the Wood's metal technique,” International Journal of Rock Mechanics and Mining Sciences, Vol. 37, No. 1, pp. 133-142 (2000).
38.Rivard, P., Fournier, B., and Ballivy, G., ”Quantitative Petrographic Technique for Concrete Damage Due to ASR: Experimental and Application,” Cement Concrete and Aggregates , Vol. 22, No.1, pp. 63-72 (2000).
39.Rivard, P., Fournier, B., and Ballivy, G., “The Damage Rating Index Method for ASR Affected Concrete-A Critical Review of Petrographic Features of Deterioration and Evaluation Criteria,” Cement Concrete and Aggregates , Vol. 24, No. 2, pp. 81-91 (2002).
40.Swamy, R.N., The Alkali-Silica Reaction in Concrete, Van Nostrand Reinhold, New York, (1992).
41.Shayan, A., “Prediction of alkali reactive potential of some Australian aggregate and correlation with service performance,” ACI Material Journal, Vol. 89, pp. 13-23 (1992).
42.Shayan, A., “The ‘Pessimum’ Effect in an Accelerated Motar Bar Test Using 1 M NaOH Solution at 80℃,” Cement and Concrete Composites, Vol. 14, pp. 249-255 (1992).
43.Thorsen, T., and Larsen, E.S., “Alkali-Silica Reaction in Damaged Concrete Static and Dynamic Tests-Material Investigations.” Proceeding 10th International Conference on Alkali-Aggregate Reaction in Concrete, Melbourne, Australia, pp.402-409 (1996).
44.Zinin, P., Manghnani, M.H., Wang, Y.C., and Livingston, R.A., “Detection of Cracks in Concrete Composites Using Acoustic Microscopy,” NDT&E International, Vol. 31, No. 1, pp. 283-287 (2000).
指導教授 田永銘(Yong-Ming Tien) 審核日期 2004-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明