博碩士論文 91322037 詳細資訊


姓名 郭明峰(Ming-Feng Kuo)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 皂土-碎石混合物之壓實性質
(The compaction properties of bentonite-crushed rock mixtures)
檔案 [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 高放射性廢料於地下深層處置中常利用緩衝材料阻隔放射性核種外移,目前之候選緩衝材料以膨潤土為首要考慮對象。目前世界各國主要以單軸壓實法製作緩衝材料塊體,因壓實過程中材料與壓實模具間會產生壁面摩擦力,故無法有效獲得塊體實際壓實應力與密度之關係。故本研究依據瑞典單軸壓實法之概念,及直接量測法量測壁面摩擦力之方式設計壓實模具,進行不同膨潤土重量壓實試驗,並利用Gurnham提出之壓縮方程式,求取膨潤土無摩擦力影響之壓縮曲線。
同時針對可能影響壓實行為之因素進行分析探討。最後利用Tien等人(2004)所提出膨潤土-碎石混合物壓縮曲線之預測方法,預測純膨潤土添加不同體積比之花崗岩碎石及矽砂時的壓縮曲線。
摘要(英) Buffer materials are used to retard the migration of radionuclides emitted from high level wastes in a repository. Bentonite is the primary candidate for the buffer materials at the present day. The uniaxial compaction method is generally used to produce the bentonite block. The wall friction is produced between the materials and the compaction mold during the compaction process, so we can’t obtain the relationship between the actual compaction stress and the density of the bentonite block. The first target for this study is to search the literature of compaction techniques for buffer materials. Designing the compaction mold according to the concept of uniaxial compaction method. Adopting the direct method to measure the wall friction during bentonite block compaction and ejection. Using the compression equation developed by Gurnham to obtain the friction-free compressive curve of bentonite block. To analyze and discuss the effects that will influence the compaction behavior. To examine the effect of crushed rock content on the compaction characteristics, a series of uniaxial compaction tests for bentonite-crushed rock mixtures with different sand fractions (by weight) were performed. A prediction model based on micromechanics for predicting the compaction curves of bentonite-crushed rock mixtures was proposed by Tien et al. (2004).
關鍵字(中) ★ 緩衝材料
★ 膨潤土
★ 壓實
★ 壁面摩擦力
★ 壓縮曲線
關鍵字(英) ★ Wall fraction
★ Bentonite
★ Compaction
★ Compaction curve
★ Buffer material
論文目次 中文摘要 I
英文摘要 II
誌 謝 III
目 錄 IV
圖目錄 VIII
表目錄 XII
第一章 緒 論 1
1.1 研究動機與目的 1
1.2 研究方法 2
1.3 論文內容 2
第二章 文獻回顧 4
2.1 放射性廢棄物簡介 4
2.2 放射性廢棄物處置概念 5
2.2.1 低放射性廢棄物處置 5
2.2.2 高放射性廢棄物處置 7
2.3 緩衝材料之概念與功能 9
2.4 緩衝材料壓實技術分類 11
2.5 壁面摩擦效應對單軸壓實法壓製塊體之影響 15
第三章 壁面摩擦力量測方法及壓實模具設計 16
3.1 壁面摩擦力量測方法及量測誤差比較 16
3.1.1 間接量測法 16
3.1.2 直接量測法 18
3.1.3 誤差來源與量測誤差比較 20
3.1.3.1 壁面摩擦力量測誤差比較 20
3.1.3.2 密度量測誤差比較 25
3.1.3.3 推出力量測誤差比較 30
3.1.4 綜合討論 32
3.2 壓實模具設計 33
3.2.1 壓實模具設計概念 34
第四章 試驗材料、儀器及試驗程序 37
4.1 試驗材料選取 37
4.1.1 美國皂土 37
4.1.2 日興土 37
4.1.3 花崗岩碎石 40
4.2 材料準備 41
4.2.1 膨潤土 41
4.2.2 花崗岩碎石 45
4.3 試驗儀器設備 45
4.3.1 壓力系統 45
4.3.2 環型荷重計 47
4.3.3 位移計 47
4.3.4 資料擷取系統 48
4.3.5 顎式碎石機 49
4.4 壓實試驗程序 49
4.4.1 膨潤土塊體壓實程序 49
4.4.2 膨潤土塊體推出程序 50
第五章 壓縮曲線特性 52
5.1 壓縮方程式 52
5.2 無摩擦力影響之壓縮曲線 52
5.2.1 求取無摩擦力影響之壓縮曲線的方法 54
5.2.1.1 選用之壓縮方程式 54
5.2.1.2 不同膨潤土重量壓實試驗(壁面無潤滑情況) 54
5.2.1.3 不同膨潤土重量壓實試驗(壁面潤滑情況) 64
5.2.2 綜合討論 69
5.3 影響壓實行為之因素 70
5.3.1 壓實速率 70
5.3.2 壁面條件 75
5.3.3 膨潤土重量 81
5.3.4 碎石含量 86
5.3.5 碎石粒徑 92
5.3.6 含水量 96
第六章 模式預測皂土-碎石混合物之壓縮曲線 103
6.1 微分模式基本概念 106
6.2 加壓階段模擬 109
6.3 預測成果說明 111
第七章 結論與建議 116
7.1 結論 116
7.2 建議 118
參考文獻 119
參考文獻 [1] 田永銘,「緩衝材料之壓實性質與其特性初步探討」,行政院原子能委員會委託研究計畫研究報告,中壢(2003)。
[2] 邱太銘,放射性廢棄物管理,中興工程科技研究發展基金會,台北(2002)。
[3] 莊文壽、洪錦雄、董家寶,「深層地質處置技術之研究」,核研季刊,第三十七期,第44-54頁(2000)。
[4] 譚建國、王永明,多相複合材料之微分模式 I.整體彈性係數,中國工程學刊,第六卷,第二期,pp. 73-82 (1983)。
[5] Adams, M. J., McKeown, R., “Mocromechanical analysis of the pressure-volume relationships for powders under confined uniaxial compression,” Powder Technology, Vol. 88, pp. 155-163 (1996).
[6] Boonsinsuk, P., Pulles, B. C., Kjartanson, B. H., and Dixon, D. A., “Prediction of compactive effort for a bentonite-sand mixture,” 44th Canadian Geotechnical Conference Volume 2, Alberta, Canada, pp. 64.1-64.12 (1991).
[7] Briscoe, B. J., and Rough, S. L., “The effects of wall friction in powder compaction,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol, 137, pp. 103-116 (1998).
[8] Chinh, P. D., “Weighted self-consistent approximations for elastic completely random mixtures,” Mechanics of Materials, Vol. 32, pp. 463-470 (2000).
[9] Christensen, R. M., “A critical evaluation for a class of micromechanics models,” J. Mech. Phys. Solids, Vol. 38, No. 3, pp. 379-404 (1990).
[10] Denny, P. J., “Compaction equations : a comparison of the Hechel and Kawakita equations,” Powder Technology, Vol. 127, pp. 162-172 (2002).
[11] Figliola, R. S., and Beasley, D. E., Theory and design for mechanical measurements. John Wiley & Sons, U. S. (1995).
[12] Guyoncourt, D. M. M., Tweed, J. H., Gough, A., Dawson, J., and Pater, L., “Constitutive data and friction measurements of powders using instrumented die.” Powder Metallurgy, Vol. 44, No. 1, pp. 25-33(2001).
[13] Hashin, H., “Analysis of composite materials–A Survey,” Journal of Applied Mechanics. Vol. 50, pp. 481-505 (1983).
[14] Japan Nuclear Cycle Development Institute, Repository design and engineering technology. JNC Supporting Report 2, Japan (1999).
[15] Johannesson, L. E., Börgesson, L., Sanden, T., Compaction of bentonite blocks – development of technique for industrial production of blocks which are manageable by man. SKB technical report TR 95-19, Swedish (1995).
[16] Johannesson L. E., Compaction of full size blocks of bentonite for the KBS-3 concept – initial tests for the evaluating the technique. SKB technical report R 99-66, Swedish (1999).
[17] Johannesson, L. E., Nord, S., Pusch, R., Sjöblom, R., Isostatic compaction of beaker shaped bentonite blocks on the scale 1:4. SKB technical report TR 00-14, Swedish (2000).
[18] Klemm, U., Sobek, D., Schone, B., and Stockmann, J., “Friction measurements during dry compaction of silicon carbide,” Journal of the European Ceramic Society, Vol. 17, pp. 141-145(1997).
[19] Li, Y., Liu, H., Rockabrand, A., “Wall friction and lubrication during compaction of coal logs,” Powder technology, Vol. 87, pp.259-267 (1996).
[20] Macleod, H. M., and Marshall, K., “The Determination of density distribution in ceramic compacts using autoradiography,” Powder Technology, Vol. 16, pp. 107-122(1977).
[21] Marcial, D., Delage, P., and Cui, Y. J., “On the high stress compression of bentonites,” Canadian Geotechnical Journal, Vol. 39, pp. 812-820 (2002).
[22] Mclaughlin, R., “A study of the differential scheme for composite materials,” Int. J. Engng. Sci. Vol. 15, pp. 237-244 (1977).
[23] Michel, J-C., “A self-consistent estimate of the non-linear properties of isotropic two-phases composites,” Vol. 58, pp. 753-758 (1998).
[24] Nemat-Nasser, S., Hori, M., Micro-mechanics: overall properties of heterogeneous materials. Elsevier, Amsterdam (1993).
[25] Nedderman, R. M., Statics and kinematics of granular materials. Cambridge University Press, U.K (1992).
[26] Norris, A. N., “A differential scheme for the effective moduli of composites,” Mechanics of materials, Vol. 4, pp. 1-16 (1985).
[27] Omine, K., Ochiai, H., and Yoshida, N., “Estimation of in-situ strength of cement-treated soils based on a two-phase mixture model,” Soils and foundations. Vol. 38, No. 4, pp. 17-29 (1998).
[28] Panelli, R., Filho, F. A., “A study of a new phenomenological compacting equation,” Powder Technology, Vol. 114, pp. 255-261 (2001).
[29] Roure, S., Bouvard, D., Doremus, P., and Pavier, E., “Analysis of die compaction of tungsten carbide and cobalt powder mixtures,” Powder Metallurgy, Vol. 42, No. 2, pp. 164-170(1999).
[30] Stanley-Wood, N. G., Enlargement and compaction of particulate solids, Butterworths, U.K. (1983).
[31] Tien, Y. M., Wu, P. L., Chuang, W. S., and Wu, L. H., “Micromechanical Model for Compaction Characteristics of Bentonite-Sand Mixtures,” Applied Clay Science (accepted).
[32] Tien, Y. M., Wu, P. L., and Kuo, M. F., “The measuring method for wall friction during bentonite block compaction and ejection,” Proceedings of the 5th Asian Young Geotechnical Engineers Conference, Taipei, Roc, pp. 187-194(2004).
[33] W. L. wardrop & Associates Ltd, Buffer and backfilling systems for a nuclear fuel waste disposal vault. AECL technical record TR-341, Canada (1985).
[34] Wu, T. T., “The effect of inclusion shape on the elastic moduli of a two-phase material,” Int. J. Solids Structure, Vol. 2, pp. 1-8 (1966).
[35] Yong, R. N., Boonsinsuk, P., and Wong, G., “Formulation of backfill material for nuclear fuel waste disposal valut,” Canadian Geotechnical Journal, Vol. 23, pp. 216-228(1986).
[36] Zhao, X. H., Chen, W. F., “The effective elastic moduli of concrete and composite materials,” Composites Part B, Vol. 29B, pp. 31-40 (1998).
指導教授 田永銘、黃偉慶
(Yong-Ming Tien、Wei-Hsing Huang)
審核日期 2004-7-19

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡