博碩士論文 91323026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.116.8.110
姓名 李庚益(Kent-Yi Lee)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 熱處理對車用鋁合金材料熱穩定性與表面性質之影響
(Effects of heat treatment on thermal stability and surface properties of aluminum automotive alloys)
相關論文
★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 冷加工與熱處理對AA7055鍛造型鋁合金微結構與機械性質的影響★ 冷抽量對AA7055(Al-Zn-Mg-Cu)-T6態合金腐蝕性質和微結構之影響
★ 熱力微照射製作絕緣層矽晶材料之研究★ 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響
★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究
★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究★ Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究
★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響
★ 恆溫蒸發熔煉鑄造製程合成鎂基介金屬化合物及其氫化特性之研究★ 無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響
★ 微量Sc對A356鑄造鋁合金機械性質之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究對Al-12.5Si-4.5Cu-1.0Mg合金施以T6時效處理,以探討時效處理對合金之微結構、與機械性質及高溫熱穩定性之影響,並利用濺鍍沈積法製作Al-Sc合金薄膜,同時施以不同的溫度之熱處理,探討熱處理與Sc元素添加對鋁薄膜晶粒結構、導電特性與表面突起之影響。
實驗結果顯示,Al-12.5Si-4.5Cu-1.0Mg合金雖可藉由T6時效處理,析出強化相θ′(Al2Cu相)與λ′(Al5Cu2Mg8Si6相),提高合金的機械強度,但析出相經300℃持溫10小時後會明顯粗化,產生過時效現象,致使時效處理合金之熱穩定性反不如鑄態合金。合金經300℃持溫100小時之熱穩定測試後進行磨耗測試,在低荷重(10N)磨耗時,鑄態合金與時效處理後合金之磨耗量相近,顯示T6熱處理並未對在低荷重的磨耗行為有所影響;但在高荷重(40N)時,由於鑄態合金經300℃持溫處理後之硬度較高,因此耐磨性較T6時效處理後之合金為高。
以濺鍍沈積法製作0~0.4wt%Sc之Al-Sc合金薄膜,同時對薄膜施以200℃、300℃、400℃及500℃之熱處理一小時,並對薄膜晶粒型態、電阻率變化與表面突起特性進行分析。
實驗結果顯示,添加Sc可有效降低薄膜剛沈積時的晶粒尺寸,並可限制晶界的移動,抑制熱處理時晶粒成長與再結晶現象。熱處理可促使Al-Sc薄膜析出Al3Sc相,大幅改善其導電性質,經500℃熱處理後,Al-Sc之電阻率已降低至與純鋁薄膜相近。Sc元素添加可提高鋁薄膜之降伏強度,並減少表面突起數量,且效果隨Sc含量增加而增加;然而經400℃熱處理後,Al-Sc薄膜之突起的尺寸將大幅的增加。
摘要(英) This study elucidates the effects of T6 heat treatment on thermal stability and wear behavior of Al-12.5Si-4.5Cu-1.0Mg alloy. The experimental alloys under as-cast and T6 heat-treated conditions were isothermally heat-treated at 300℃ for 100 hours to investigate thermal stability and wear behavior.
The results reveal that T6 heat-treatment promoted the precipitation of the λ′ (Al5Cu2Mg8Si6) and θ′ (Al2Cu) phases and the augmentation of hardness of Al-12.5Si-4.5Cu-1.0Mg alloy. However, the coarsening of λ′ and θ′ phases led to a large decrease in hardness following isothermal heat-treatment 10 hours. The thermal stability of the T6 heat-treated alloy was much worse than that of the as-cast alloy. For wear behavior, the as-cast and T6 heat-treated alloys showed the same wear rate with 10N load after isothermal heat-treatment. This indicated the wear rates of Al-12.5Si-4.5Cu-1.0Mg alloys were independent on T6 heat treatment. Under 40N load, the wear resistance of as-cast alloy was superior to that of T6 heat-treated alloy after isothermal heat-treatment.
The effects of the heat treatment and Sc contents on grain structure, electrical resistivity and hillocks formation of Al-Sc alloy films were also investigated in this study. Three kinds of Al-x Sc (x = 0, 0.2, 0.4 wt. %) alloy films were prepared via sputtering deposition, subsequently exposed at 200℃, 300℃, 400℃ and 500℃ up to 1 hours.
The results revel that the addition of Sc reduced the grain size of the as-deposited films and immobilized the grain boundaries, retarding grain growth and re-crystallization of the films during heat-treatment. Although the as-deposited Al–Sc alloy films showed high resistivity, the former was significantly decreased due to the precipitation of Al3Sc phase during heat-treatment. After 500℃ treatment, the resistivity of Al - Sc alloy films was similar to that of pure Al film. The hillock density dramatically reduced with increasing the Sc concentration in the films. However, average size of the hillocks in Sc containing films clearly increased when heat-treatment temperature was elevated to 400℃.
關鍵字(中) ★ 電阻率
★ Al-12.5Si-4.5Cu-1.0Mg合金
★ 熱處理
★ 熱穩定性
★ 磨耗性質
★ 表面突起
★ 鈧
★ 鋁合金薄膜
★ 濺鍍
關鍵字(英) ★ Al-12.5Si-4.5Cu-1.0Mg alloy
★ Heat-treatment
★ Therm
論文目次 目錄
中文摘要 i
英文摘要 iii
謝 誌 v
目錄 vi
圖目錄 viii
表目錄 x
第一章 前 言 1
1.1 研究背景與文獻回顧 1
1.1.1 Al-Si-Cu-Mg 鋁合金 1
1.1.2 鋁合金薄膜 2
1.2 研究目的 3
第二章 基礎理論 4
2.1 Al-Si-Cu-Mg合金之基礎理論 4
2.1.1 鋁合金簡介 4
2.1.2 Al-Si-(Cu-Mg)合金 6
2.1.3 Al-Si-Cu-Mg合金之介金屬相 9
2.1.4 Al-Si-Cu-Mg合金之熱處理 12
2.1.5 Al-Si-Cu-Mg合金之析出順序 16
2.1.6 Cu、Mg含量對Al-Si-Cu-Mg合金析出及熱穩定性之影響 17
2.2磨耗性質 20
2.3鋁薄膜簡介 24
2.3.1鋁薄膜特性與製作方式 24
2.3.2鋁薄膜沈積理論 26
2.4 鋁薄膜表面突起 28
2.4.1鋁薄膜突起之原因與分類 28
2.4.2鋁薄膜晶粒尺寸與表面突起 29
2.4.3抑制薄膜突起之機制 31
2.5 Al-Sc合金簡介 35
第三章T6熱處理對Al-12.5Si-4.5Cu-1.0Mg合金之磨耗性質與熱穩定性之影響..39
3.1實驗方法 39
3.1.2 合金的準備與鑄造 40
3.1.3 熱處理 41
3.1.3-1 T6熱處理 41
3.1.3-2 長時間時效處理 41
3.1.4 微結構觀察與分析 41
3.1.4-1 光學顯微鏡 41
3.1.4-2 掃描式電子顯微鏡 42
3.1.4-3 電子微探儀 42
3.1.4-4 導電度量測 42
3.1.4-5 熱差掃瞄分析 43
3.1.5 機械性質試驗 43
3.1.5-1 硬度試驗 43
3.1.6 磨耗試驗 43
3.2 結果與討論 45
3.2.1 金相觀察及電子微探儀分析 45
3.2.2 微分掃瞄熱分析 50
3.2.3 導電度分析 53
3.2.4 硬度試驗 57
3.2.5 磨耗試驗 62
3.3 結論 65
第四章 熱處理與Sc含量對Al-Sc合金薄膜表面突起之影響 66
4.1實驗方法 66
4.1.1薄膜製作 67
4.1.1-1濺鍍靶材之熔配 67
4.1.1-2濺鍍前處理與鍍膜參數 67
4.1.1-3薄膜熱處理 68
4.1.2微結構分析 69
4.1.2-1薄膜成分分析 69
4.1.2-2掃描式電子顯微鏡 69
4.1.2-3穿透式電子顯微鏡 70
4.1.2-4原子力顯微鏡 70
4.1.3物性量測 70
4.1.3-1電阻率量測 70
4.1.3-2薄膜內應力量測 71
4.2結果與討論 73
4.2.1沈積態之薄膜晶粒結構觀察 73
4.2.2薄膜應力曲線分析 74
4.2.3薄膜熱處理後之晶粒結構觀察 76
4.2.4電阻率量測 79
4.2.4薄膜表面型態觀察 82
4.3結論 92
第五章 總結論 93
第六章 未來研究方向 95
參考文獻 97

圖目錄
圖2.1 Al-Si二元合金平衡相圖 8
圖2.2 Cu添加對合金於250 ℃下勃氏硬度值之變化曲線 19
圖2.3磨耗模式的種類 21
圖2.4磨耗類型示意圖 22
圖2.5滑動磨耗行為中不同機構,(a)黏著磨耗,(b) 表面疲勞磨耗
(c) 表面疲勞磨耗,(d) 磨潤化學磨耗與研磨磨耗 23
圖2.6不同磨耗階段的磨耗曲線 24
圖2.7濺鍍法原理示意圖 26
圖2.8薄膜成核與成長示意圖 27
圖2.9鋁薄膜表面突起之SEM影像觀察 28
圖2.10純鋁薄膜之應力與溫度曲線 29
圖2.11薄膜晶粒大小與突起形態之關係 30
圖2.12基材溫度與沈積率對突起密度之關係 32
圖2.13鈍化層的厚度與表面突起之關係 32
圖2.14 Ta、Nd元素添加對鋁薄膜降伏強度與突起之影響 34
圖2.15 Ta、Nd元素添加對突起密度之影響 34
圖2.16 Al-Sc二元合金之部分相圖 36
圖2.17鋁-過渡元素之再結晶溫度比較圖 37
圖2.18 Sc元素添加對各合金降伏強度之影響 38
圖3.1實驗流程圖 39
圖3.2 (a)金屬模模具、(b) 鑄件 40
圖3.3磨耗試驗設備之示意圖 44
圖3.4 Al-12.5Si-4.5Cu-1.0Mg合金之鑄造微結構
(箭頭:1共晶矽 2:Al2Cu 3:Al5Cu2Mg8Si6) 45
圖3.5 Al-12.5Si-4.5Cu-1.0Mg合金經固溶處理後之微結構
(箭頭:1共晶矽 2:Al2Cu 3:Al5Cu2Mg8Si6) 47
圖3.6合金經300C持溫10 h後之BEI影像圖(a)鑄態合金
(b)T6熱處理合金(箭頭:1共晶矽 2:Al2Cu 3:Al5Cu2Mg8Si6) 49
圖3.7 Al-12.5Si-4.5Cu-1.0Mg合金固溶處理前後之DSC曲線
(I: θ′相的析出波峰,II:λ′相的析出波峰) 51
圖3.8鑄造合金於300 ℃持溫0 ~10h期間之DSC曲線 52
(I: θ′相的析出波峰,II:λ′相的析出波峰) 52
圖3.9 T6熱處理合金於300℃持溫0 ~ 10 h期間後之DSC曲線
(I: θ′相的析出波峰,II:λ′相的析出波峰) 53
圖3.10合金於鑄態、固溶淬火以及T6 熱處理後之導電度量測 54
圖3.11合金於300 ℃持溫100 h之導電度變化 57
圖3.12合金於鑄態、固溶處理及T6時效處理後之硬度值 58
圖3.13合金於300 ℃持溫100 h之硬度變化曲線 61
圖3.14合金經300℃熱穩定性試驗後之磨耗量 63
圖3.15 荷重10 N時之磨耗表面 (a)鑄態合金,(b)T6熱處理合金 64
圖3.16 荷重40 N時之磨耗表面 (a)鑄態合金,(b)T6熱處理合金 64
圖4.1實驗流程圖 66
圖4.2四點探針示意圖 71
圖4.3曲率量測之系統架構圖 72
圖4.4薄膜於沈積態之晶粒結構(a)薄膜A (b)薄膜B (c)薄膜C 73
圖4.5薄膜連續升溫之應力變化曲線 75
圖4.6薄膜於不同熱處理狀態之晶粒結構 78
圖4.7薄膜晶粒大小與熱處理溫度關係圖 78
圖4.8薄膜電阻率與熱處理溫度之關係圖 81
圖4.9薄膜A在不同熱處理狀態下之SEM影像圖
(a)沈積態(b)200℃熱處理(c)400℃熱處理 86
圖4.10薄膜A在不同熱處理狀態下之AFM影像圖
(a)沈積態(b)200℃熱處理(c)400℃熱處理 87
圖4.11薄膜B在不同熱處理狀態下之SEM影像圖
(a)沈積態(b)200℃熱處理(c)400℃熱處理 88
圖4.12薄膜B在不同熱處理狀態下之AFM影像圖
(a)沈積態(b)200℃熱處理(c)400℃熱處理 89
圖4.13薄膜C在不同熱處理狀態下之SEM影像圖
(a)沈積態(b)200℃熱處理 (c)400℃熱處理 90
圖4.14薄膜C在不同熱處理狀態下之AFM影像圖
(a)沈積態(b)200℃熱處理(c)400℃熱處理 91

表目錄
表2.1鋁合金代號與主要元素關係: (a)鍛造鋁合金(b)鑄造鋁合金 5
表2.2常用的Al-Si合金之成份表 7
表2.3常用鑄造Al-Si合金之相對性質 8
表2.4 Al-Si-Cu-Mg合金之凝固反應 9
表2.5 Al-Si-Cu-Mg合金介金屬化合物之化學組成 9
表2.6 Al-Si-Cu-Mg合金之各式富鐵相 10
表2.7鋁合金基本熱處理之代號 15
表2.8 Al-Si-Cu-Mg合金之析出相結構與性質 16
表3.1合金成分 40
表3.2鋁基地中Cu、Mg原子含量 47
表3.3鑄態與T6熱處理合金於300℃等溫期間之導電度 55
表3.4鑄態與T6熱處理合金於300 ℃等溫期間之硬度值 61
表4.1靶材成分分析 67
表4.2薄膜之成分分析 69
表4.3薄膜之降伏應力與降伏溫度 76
表4.4薄膜於不同熱處理下突起密度與尺寸 85
參考文獻 1. F. H. Samuel, P. Quellet, A.M. SAMUEL, and H.W. DOTY, “Effect of Mg and Sr Additions on the Formation of Intermetallics in Al-6 Wt Pct Si-3.5 Wt Pct Cu-(0.45)to(0.8)Wt Pct Fe 319-Tpe Alloy”, Metallurgical and Materials Transactions A,,V29A, (1998) ,pp.2871-2884.
2. A. M. Samuel, J. Gauthier, F.H. Samuel,” Microstructural Aspsects of the Dissolution and Melting of Al2Cu Phase in Al-Si Alloys during Solution Heat Treatment” ,Metallurgical and Materials Transactions A:, V27A, (1996),pp.1785-1798.
3. Ned Tenekedjiev, Hasim Mulazimoglu, Bernard Closset,” Microstructures and Thermal Analysis of Strontium-Treated Al-Si alloys ”, American Foundrymen’s Society, Inc.,(1995), pp.23-76.
4. R. W. Bruner, “Metallurgy of Die Casting Alloys”, SDCE. Detroit. MI, (1976), pp.25.
5. F. H. Samuel and A. M. Samuel, “Effect of magnesium content on the ageing behaviour of water-chilled Al-Si-Cu-Mg-Fe-Mn(380) alloy castings”, Journal of Materials Science, V30, (1995),pp.2531-2510.
6. J. E. Gruzleski and B.M. Closset: ‘The treatment of liquid aluminum-silicon alloy’, Des Plaines, IL, American Foundry Society Inc.,(1990), p.18.
7. J. Man, Li. Jing, and S. G. Jie, ”The effects of Cu addition on the microstructure and thermal stability of an Al-Mg-Si alloy”, Journal of Alloys and Compounds, V304,(2007), pp. 146-150.
8. M. Zeren, ”Effect of copper and silicon content on mechanical properties in Al-Cu-Si-Mg alloys”, Journal of Materials Processing Technology, V169,(2005), pp. 292-298.
9. G. Wang, X. Bain, W. Wang and J. Zhang,” Influence of Cu and minor elements on solution treatment of Al-Si-Cu-Mg cast alloys”, Materials Letters, V57,(2003), pp. 4083-4087.
10. H. G. Kang, M. Kida, H.Miyahara, “Age-Hardening Characteristics of Al-Si-Cu-Base Cast Alloys”, AFS Transactions, V107,(1999), pp. 507-515.
11. L. Lasa, and J. M. Rodriguez-Ibabe, ”Wear behaviour of eutectic and hypereutectic Al-Si-Cu-Mg casting alloys tested against a composite brake pad”, Materials Science and Engineering A, V363,(2003), pp. 193-202.
12. 陳楷林“平面顯示器用鋁合金薄膜濺鍍靶材之發展”工業材料雜誌179期,(2001), pp.153-158.
13. 李秉璋,王正和“金屬反射膜材料簡介”工業材料雜誌168期,(2000), pp.125-130.
14. Hong Xiao“半導體製程技術導論”歐亞書局,(2001), p.432
15. D. K, B. Heiland, W. D.Nix, E. Arzt, M. D. Deal, J. D. Plummer,“Microstructure of thermal hillocks on blanket Al thin films”Thin Solid Films,V371,(2000),pp.278-282.
16. C. Kylner, and L.Mattsson,“Initial development of the lateral hillock distribution in optical quality Al thin films studied in real time”Thin solid films,V307,(1997),pp.169-177.
17. L. Mattsson, and Y. H. Le Page,“Real-time study of migration in Aluminum films by means of subangstrom-sensitive scattering and profiling methods”Thin solid films,V198,(1991),pp.149-156.
18. C. Kylner, and L.Mattsson,“Enhanced optical performance of aluminum films by copper inclusion”Thin solid films,V348,(1999), pp.222-226.
19. A. J. Learn,“Suppression of aluminum hillock growth by overlayers of silicon dioxide chemically-vapor-deposited at low temperature”, Journal of Vacuum Science and Technology B, V4,(1986),pp.774-776.
20. M. Zaborowski, and P.Dumania,“Kinetics of hillock growth in Al and Al-alloys”Microelectronic Engineering,V50,(2000),pp.301-309.
21. E. Iwamura, T.Ohnishi, K.Yoshikawa, and K.Itayama,“In situ scanning electron microscope observation of hillock and whisker growth on Al-Ta alloy films for interconnections of thin film transistor-liquid crystal displays” Journal of Vacuum Science and Technology,A12, (1994),pp.2922-2924.
22. T. Ohnishi, E. Iwamura, and K.Takagi,“Effects of Nd content in Al thin films on hillock formation” Journal of Vacuum Science and Technology, A15,(1997), pp.2339-2348.
23. T. Ohnishi, E. Iwamura, and K.Takagi,“Morphology of sputter deposited Al alloy films”Thin Solid Films,V340,(1999), pp.306-316.
24. V. G. Davydov, T. D. Tostove, V. V. Zakharov, Y. A. Filatov and V. I. Yelagin, “Scientific principle of making an alloying addition of scandium to aluminium alloys” Materials Science and Engineering A, V280, (2000),pp.30-36.
25. L. K. Lamikov and G. V. Samsonov, “Soviet Non-Ferrous Metals Res.”(USSR), V9,(1964), pp.79-82.
26. Z. Yin,Q. Pan,Y. Zhang and F. Jiang,“Effect of minor Sc and Zr on the microstructure and mechanical properties of Al-Mg based alloys” Materials Science and Engineering A,V280,(2000),pp.151-155.
27. V. Ocenasek and M. Slamova,“Resistance to recrystallization due to Sc and Zr addition to Al-Mg alloys”Mater Characterization,V47,(2001),pp.157-162.
28. J. E. Hatch,“ Aluminum properties and physical metallurgy”, ASM International, Metals Park, Ohio, (1984), pp. 351-377.
29. J. E. Hatch,“ Aluminum: properties and physical metallurgy”, ASM International, Metals Park, Ohio, (1984), pp. 320-350.
30. J. E. Gruzleski and B.M. Closset: ‘The treatment of liquid aluminum-silicon alloy’, Des Plaines, IL, American Foundry Society Inc.,(1990), p.13.
31. J. E. Gruzleski and B.M. Closset: ‘The treatment of liquid aluminum-silicon alloy ’, Des Plaines, IL, American Foundry Society Inc.,(1990),pp.14-15.
32. J. R. Davis & Associates,“ASM specialty handbook: aluminum and aluminum alloys”, ASM International Materials Park, Ohio, (1994), p.555.
33. J. E. Hatch,“Aluminum properties and physical metallurgy”, ASM International, Metal Park, Ohio(1984), pp. 346-347.
34. B. Closset and J. E. Gruzleski,“Structure and properties of hypoeutectic Al-Si-Mg alloys modified with pure strontium”, Metallurgical and Materials Transactions A, 13A (1982), pp. 945-951.
35. M. Shamsuzzoha, L. M. Hogan and J. T. Berry,“Effects of modifying agents on crystallography and growth of silicon phase in Al-Si casting alloys”, AFS Transactions,(1993), pp. 999-1005.
36. M. D. Hanna, S. Z. Lu and A. Hellawell,“Modification in aluminum-silicon system”, Metallurgical and Materials Transactions A, 15A (1984), pp. 459-469.
37. S. Khan and R. Elliot,“Effect of antimony on the growth kinetics of aluminum-silicon eutectic alloys”, Journal of Materials Science,V29 (1994), pp. 736-741.
38. A. I. Telli and S. E. Kisakurek: “Effect of antimony additions on the silicon spacing in directionally solidified Al-Si eutectics”, Scripta Materialia, V20, (1986), pp.1657-1660.
39. P. N. Crepeau, ”Effect of Iron in Al-Si Casting Alloys: A Critical Review”, AFS Transactions, V103, (1995), pp.361-365.
40. A. M. Samuel, F. H. Samuel ,”Observations on the /formation of β-Al5FeSi phase in 319 type Al-Si alloys”, Journal of Materials Science, V31, (1996),pp.5529-5539.
41. L. Wang ,”Iron-Bearing Compounds in Al-Si Diecasting Alloys : Morphology and Conditions Under Which They Form” , AFS Transactions, V107,(1999), pp.231-238.
42. P. S. Wang, S. L. Lee, and J. C. Lin, ”Effects of solution temperature on mechanical properties of 319.0 aluminum casting alloys containing trace beryllium ”, Journal of Materials Research,V15, (2000),pp.2027-2035.
43. F. H. Samuel, and A. M. Samuel, “Decomposition of Fe-Intermetallics in Sr-Modified cast 6xxx type aluminum alloys for automotive skin”, Metallurgical and Materials Transactions A,V32A,(2001), pp.2061-2075.
44. D. J. Chakrabarti, and D. E. Laughlin, “Phase relations and precipitation in Al–Mg–Si alloys with Cu additions”, Progress in Materials Science, V49, (2004), pp. 389-410.
45. H. W. L. Philips,“ Equilibrium Diagrams of Aluminium Alloy Systems”, The Aluminum Development Association, London,(1961), pp. 128-33.
46. J. Crowther, ”Overheating Phenomena in Aluminium-Magnesium-Silicon Alloys of the Duralumin Type”, J. Inst. Metals, V76, (1949-50), pp. 201-236.
47. C. H. Ca´ceres, M.B. Djurdjevic, T.J. Stockwell and J.H. Sokolowski,” The effect of Cu content on the level of microporosity in Al-Si-Cu-Mg casting alloys”, Scripta Materialia, V40, (1999), pp. 631-637.
48. K. G. Basavakumar, P. G. Mukunda, and M. Chakraborty,” Impact toughness in Al–12Si and Al–12Si–3Cu cast alloys—Part 1: Effect of process variables and microstructure”, International Journal of Impact Engineering, V35, (2008),pp.199–205.
49. L. Lasa, and J. M. Rodriguez-Ibabe,“Evolution of the main intermetallic phases in Al-Si-Cu-Mg casting alloys during solution treatment”, Journal of Materials Science, V 39, (2004) , pp.1343 – 1355.
50. 劉國雄, 林樹均, 李勝隆, 鄭晃忠,葉均蔚編著,工程材料科學,全華圖書,pp. 328-332.
51. 劉國雄, 葉均蔚,“高強力鋁合金之熱處理-析出硬化”,金屬熱處理, 14 期,1985,pp. 1-28.
52. D. Apelian, S. Shivkumar and G. Sigworth, “Fundamental aspects of heat treatment of cast Al-Si-Mg alloys”, AFS Trans., V97, (1989), pp. 727-743.
53. J. Gauthier, P. R. Louchez and F. H. Samuel, “Heat treatment of 319.2 aluminum automotive alloy”, AFS Int. Cast Metals, V8, (1995), pp. 91-106.
54. L. E. Marsh and G. Reinenann, AFS Trans., V87, (1979), pp. 413-422.
55. J. E. Hatch, ”Aluminum: properties and physical metallurgy” , London, Butterwordths and Co., Ltd.,(1976),pp.143-148.
56. 劉偉隆, 林淳杰, 曾春風, 陳文照, “物理冶金”, 全華科技圖書股份有限公司, (1996),pp.16-10~11.
57. S. Shivkumar, S. Ricci, Jr., and D. Apelian, “Influence of solution parameters and simplified supersaturation treatments on tensile properties of A356 Alloy”, AFS Transaction, V98, (1990),pp.913-922.
58. G. Wang , Q. Sun, L. Feng, L. Hui, and C. Jing,“Influence of Cu content on ageing behavior of AlSiMgCu cast alloys”, Materials and Design, V28, (2007), pp.1001–1005.
59. Y. J. Li, S. Brusethaug, and A. Olsen, ”Influence of Cu on the mechanical properties and precipitation behavior of AlSi7Mg0.5 alloy during aging treatment”, Scripta Materialia, V54,(2006), pp. 99-103.
60. Z. Ma, E. Samuel, A. M. A. Mohamed, A. M. Samuel, F. H. Samuel and H. W. Doty,“Influence of aging treatments and alloying additives on the hardness of Al–11Si–2.5Cu–Mg alloys”, Materials and Design , V31 , (2010), pp.3791-3803.
61. P. Ouellet and S. H. Samuel, “Effect of Mg on the aging behaviour of Al-Si-Cu 319 type aluminium casting alloys” , Journal of Materials Science,V34, (1999), pp. 4671-4697.
62. M. Gupta, and E. J. Lavernia, “Effect of processing on the microstructural variation and heat-treatment response of a hypereutectic Al-Si Alloy”, Journal of Materials Processing Technology, V54, (1995), pp.261-270.
63. N. Crowell, and S. Shivkumar, " Solution treatment effects in cast Al-Si-Cu alloys ", AFS Transactions, V103, (1995), pp.721-726.
64. ASTM G40-82, “Annual book of ASTM Standards”, V03.02, (1984), p. 239.
65. A. P. Sannino and H. J. Rack, “Dry sliding wear of discontinuously reinforced aluminum composites: review and discussion”, Wear, V189, (1995), pp. 1-19.
66. K. H. Z. Gahr, “Microstructure and wear of materials”, Chapter 4 Classification of wear process, Elsevier Science Publisher, Amsterdam, The Netherlands, (1987), pp.80-131.
67. K. G. Budinski, “Surface engineering for wear resistance”, Prentice Hall, (1988), pp.16-18.
68. K. H. Z. Gahr, “Microstructure and wear of materials”, Chapter 6 Sliding wear, Elsevier Science Publisher, Amsterdam, The Netherlands, (1987), pp. 351-495.
69. 張勁燕編著,“電子材料”,五南圖書出版有限公司,p.175.
70. 楊錦章,“基礎濺鍍電漿”, 電子發展月刊,68期(72),p13.
71. Wolf and R. N. Tauber, Silicon Processing for the VLCI Era Vol. 1 — Process Technology, Lattice Press, Cunset Beach, CA, 2000.
72. Hong Xiao“半導體製程技術導論”歐亞書局,(2001), pp.463-465.
73. B. Chapman, ”Glow Discharge Processes”, John Wiley and Sons, New York, 1980.
74. C. Y. Chang and R. W. Vook,“Topography and microstructure of Al films formed under various deposition conditions” Journal of Vacuum Science and Technology A, V9,(1991),pp.559-562.
75. R. AberMann,“Internal stress of vapour-deposited aluminum films effect of O2 and water vapour present during film depsosition”, Thin Solid films,V186,(1990),pp.233-240.
76. U. Smith, N. Kristensen, F. Erison, and J.A. Schweitz,“Local stress relaxation phenomena in thin aluminum films” Journal of Vacuum Science and Technology A,V9,(1991),pp.2527-2535.
77. E. Iwamura, T. Ohnishi, and K. Yoshikawa,“A study of hillock formation on Al-Ta alloy films for interconnections of TFT-LCDs”, Thin Solid Films,V270,(1995),pp.450-455.
78. E. Iwamura, K. Takagi, and T. Ohnish,“Effect of aluminium oxide caps on hillock formation in aluminium alloy flms”, Thin Solid Films, V349 (1999),pp. 191-198.
79. T. Arai, and H. Iiyori“Annealing effects of anodized Al-based alloy for thin-film transistors”, Thin Solid Films, V 318, (1998), pp. 257-261.
80. H. S. Hu, A. J. Mardinly, and T. G. Nish,“Aluminum-samarium alloy for interconnections in integrated circuits” Journal of Vacuum Science and Technology A, V8,(1990),pp.1480-1483.
81. Y. K. Lee, N. Fujimura, and T. lto,“Annealing behavior of Al-Y alloy film for interconnection conductor in microelectronic devices” Journal of Vacuum Science and Technology B, V9,(1991), pp.2542-2547.
82. S. Takayama,“Low resistivity Al-RE (RE=La,Pr,and,Nd) alloy thin films with high thermal stability for thin-film-transistor interconnects” Journal of Vacuum Science and Technology B, V14,(1996), pp.3257-3262.
83. T. Arai, H. Takatsuji, and H. Iiyori,“Nitrogen-added Al rare-earth alloys for thin film transistors”,Thin Solid Films,V337, (1999),pp.113-117.
84. A. J. Griffin, Jr., F. R. Brotzen, and C. F .Dunn,“Mechanical properties and microstructures of Al-1%Si thin film metalliziations”Thin Soild Films,V150,(1987),pp.237-244.
85. R. Venkatraman, and J. C. Bravman,“Separation of film thickness and grain boundary strengthening effects in Al thin films on Si” Journal of Materials Research,V7,(1992),pp.2040-2048.
86. A. F. Norman, P. B. Prangnell and R. S. McEwen, “The solidification behaviour of dilute aluminum-scandium alloys”, Acta Materialia, V46 , (1999), pp.5715-5732.
87. K. A. Gschneidner and F. W. Calderwood,“Bull. Alloy Phase Diagr.” ,V10, (1989), p.34.
88. G. M. Novotny and A. J. Ardell, “Precipitation Of Al3Sc In Al-Sc Alloys”, Materials Science & Engineering A, V318A,(2001), pp. 144-154.
89. “Applications of Scandium In Al-Sc Alloys”, Ashurst Technology Web Page (http://www.scandium.org/Sc-Al.htm).
90. E. A. Marquis and D. N. Seidman, “Nanoscale structure evolution Of Al3Sc precipitation in Al(Sc) alloys”, Acta Materialia, V49,(2001), pp.1909-1919.
91. D. N. Seidman, E. A. Marquis and D. C. Dunand, “Precipitation strengthening at ambient and elevated temperature of heat- treatable Al(Sc) alloys”, Acta Materialia, V50,(2002), pp.4021- 4035.
92. L. Lasa, and J. M. Rodriguez-Ibabe,“Characterization of the dissolution of the Al2Cu phase in two Al–Si–Cu–Mg casting alloys using calorimetry”, Materials Characterization, V48, (2002), pp.371– 378.
93. D. B. Williams and C. B. Carter, “Transmission electron microscopy, a textbook for material science”, Plenum Pres, New York, (1996), pp. 9-11.
94. G. Riontino and S. Abis, “Scanning electrical resistivity (SER) study of phase transformations in an Al-Cu alloy”, Philosophical Magazine B, V64, (1991), pp. 447-461.
95. 劉國雄,林樹均,李勝隆,鄭晃忠,葉均蔚, “工程材料科學“,全華書局(1995),pp.406-411.
96. 汪建民“材料分析”中國材料科學學會,(1998),p.115.
97. Hong Xiao“半導體製程技術導論”歐亞書局, (2001), p.449.
98. M.Ohring,“The material science of thin films”,Academic Press,America, (1991),pp.416-425.
99. M. L. Kharakterova, “Phase Composition of Al-Cu-Sc Alloys at Temperatures of 450 and 500℃”, Izvestiya Akademii Nauk SSSR. Metally, No. 4, (1991), pp.195-199.
100. V. V. Zakharov and T. D. Rostova, “On the possibility of scandium alloying of copper-containing aluminum alloys”, Metal Science and Heat Treatment, V37, (1995), pp.65-69.
101. I. A. Blech and H. Sello, “The failure of thin aluminum current-carrying strips of oxidized silicon (Description of New Mode of metal failures due to passage of direct current at high current density – electrical opens in aluminum strips on silicon oxide)” Physics of Failure in Electronics, V5, (1967), pp.496-505.
102. 陳淵崇, 陳金多, 趙勤孝, 葉建宏 “光碟用反射層靶材”,工業材料177期, (2001), pp.124-131.
103. F.Bouchard and W.A. Manring,“Simulations of metallization uniformity from large planar sputtering targets”, Multilevel Interconnection, Spie, V.2090,(1993),pp.218-226.
指導教授 李勝隆(Sheng-Long Lee) 審核日期 2012-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明