博碩士論文 91323028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.15.221.67
姓名 陳威宇(Wai-Yu Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 光電化學蝕刻製作n-型(100)矽質微米巨孔 陣列及連續壁結構
相關論文
★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析
★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為
★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為
★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響
★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討
★ n-型(100)矽單晶巨孔洞之電化學研究★ 鋁在酸性溶液中孔蝕行為研究
★ 微陽極引導電鍍與監測★ 鍍金層對Bi-43Sn與Sn-9Zn BGA銲料迴銲後之接點強度影響及二元銲錫在不同溶液之電解質遷移行為
★ 人體血清白蛋白構形改變之電化學及表面電漿共振分析研究★ 微陽極導引電鍍法製作微銅柱及銅柵欄之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文以光電化學方法,在n 型(100)矽單晶上蝕刻獲得寬且深的微米級巨孔陣列及連續壁結構。研究方法利用陽極動態極化法及定電位蝕刻,在氟化物溶液中,探討預蝕刻形貌、蝕刻液濃度、添加劑、蝕刻液種類等參數對n 型(100)矽單晶的陽極極化曲線,以及蝕刻形貌的影響,進而挑選出最佳蝕刻參數,再利用定電流法製作出所需之結構。
研究結果顯示,縮短預蝕刻時間為一半,可獲得平底的預蝕刻結構,藉此加強孔洞側向的蝕刻,得到寬50μm 的蝕刻孔徑。n-型(100)矽單晶在室溫下照光150W,蝕刻孔洞深度隨氫氟酸濃度從1M 增加到6M 而減少,1M 氫氟酸有最大的蝕刻孔洞深度。試片在2M 氫氟酸中添加5M 及10M 酒精濃度,可增加蝕刻孔洞深度,但添加濃高到15.8M時容易形成電解拋光,使蝕刻效果下降。氟化銨中添加酒精的效果與氫氟酸相反,2M 氟化銨中添加越多的酒精,蝕刻效果越差。
以1M 氫氟酸,定電流0.135mA/cm2 蝕刻24 小時,可得到寬50μm,深近100μm,壁厚10μm 的連續壁結構;以2M 氫氟酸,定電流0.135mA/cm2蝕刻24 小時,可得到寬50μm,深近90μm,孔洞間距10μm 的微米巨孔陣列結構。
摘要(英) Formation of macro-pores and wall array on n-type silicon (100) by
photo-electrochemical etching has been investigated in this work. Using
dc-potentiodynamic polarization and potentiostatic etching to analyze the
anode polarization curves and etching morphologies of n-type silicon
(100) which were effect by pre-etching morphology, etching electrolyte
concentration, additive and etching electrolyte type. Choosing the best
etching parameters in the experiments and using galvanostatic etching to
fabrication the designate structures.
Results show that: decrease the pre-etching time to one half will obtain
a flat bottom pre-etching morphologies that increase the side etching of
pores and reach the 50µm pore diameters. n-type silicon (100) under
room temperature and 150W illumination, the depths of etching pores
decrease when HF concentration increase from 1M to 6M. 1M HF has the
deepest pores. Add ethanol in 2M HF will increase the etching depths.
But add 15.8M ethanol (which does not content any water) will decrease
the etching depths. On the contrary, add ethanol in 2M NH4F will
decrease the etching depths.
Galvanostatic etching with 24 hours can obtain the macro-pores and
wall array with 50µm widths, 100µm depths, and 10µm wall thickness.
關鍵字(中) ★ 氟化銨
★ 巨孔陣列及連續壁
★ 光電化學蝕刻
★ 陽極極化曲線
關鍵字(英) ★ Photo-electrochemical etching
★ Dc-potentio dynamicpolarization
★ Macro-pores and wall array
★ Ammonium
論文目次 中文摘要Ⅰ
英文摘要Ⅱ
誌謝Ⅲ
目錄Ⅳ
表目錄Ⅷ
圖目錄XI
壹、簡介1
一、研究背景1
1-1 多孔矽及其應用1
1-2 多孔矽的製作技術2
1-2-1 濕式蝕刻2
1-2-2 乾式蝕刻2
1-2-3 電化學蝕刻3
二、研究目的4
貳、原理及文獻回顧5
一、半導體電化學理論5
2-1 半導體電子能階5
V
2-2 電解液的電子能階------絕對電極電位5
2-3 半導體卅電解液界面6
2-3-1 平衡狀態7
2-3-2 平帶電位(flat-band voltage) 8
2-3-3 半導體電極的光效應(photo-effects at
semiconductor electrodes)
9
二、多孔矽形成機制10
2-4 矽在電解液中的電流—電壓(I-V)特性10
2-5 矽的陽極溶解反應11
2-6 多孔矽的形成模型12
2-6-1 Beale 模型12
2-6-2 擴散機制模型13
2-6-3 Rate 模型14
2-6-4 量子模型14
2-7 光電化學蝕刻製作多孔矽15
參、實驗方法18
3-1 試片選擇18
3-2 試片前處理18
3-3 電解蝕刻設備20
VI
3-4 蝕刻液選擇20
3-5 電化學方法21
3-6 蝕刻表面觀察22
肆、結果23
4-1 氫氟酸濃度影響矽單晶陽極電化學行為23
4-1-1 開路電位(OCP)量測23
4-1-2 陽極動態極化行為24
4-1-3 定電位蝕刻形態25
4-2 氫氟酸中酒精添加濃度影響矽單晶陽極電化學行為27
4-2-1 開路電位量測27
4-2-2 陽極動態極化行為27
4-2-3 定電位蝕刻形態28
4-3 氟化銨中酒精添加濃度影響矽單晶陽極電化學行為30
4-3-1 開路電位量測30
4-3-2 陽極動態極化行為31
4-3-3 定電位蝕刻形態31
4-4 微米巨孔陣列及連續壁結構製作32
伍、討論35
5-1 預蝕刻圖案之影響35
VII
5-1-1 預蝕刻深度35
5-1-2 預蝕刻圖樣36
5-2 蝕刻液濃度變化影響Jps及Eps 38
5-3 蝕刻液濃度變化影響蝕刻行為41
5-4 氫氟酸與氟化銨之比較42
陸、結論45
柒、未來展望47
捌、參考文獻48
參考文獻 [Angelucci 1] A. R. Angelucci, A. Poggi, L. Dori, A. Tagliani, G. C.
Cardinari, F. Corticelli, and M. Marisaldi, “Permeated
Porous Silicon Suspended Membrane as Sub-ppm
Benzene Sensor for Air Quality Monitoring“, J. Porous
Mater., 7, 197, (2000).
[Angelucci 2] R. Angelucci, A. Poggi, L. Dori, G. C. Cadinali, A.
Parisini, A. Tagliani, M. Mariasaldi, and F. Cavani,
“Permeated porous silicon for hydrocarbon sensor
fabrication“, Sens. Actuators A, 74, 1, (1999).
[Ashruf] C. M. A. Ashruf, P. J. French, P. M. Sarro, R.
Kazinczi, X. H. Xia, and J. J. Kelly, “Galvanic etching
for sensor fabrication“, J. Micromech. Microeng., 10,
505, (2000).
[Barillaro] G. Barillaro, A. Nannini, M. Piotto, “Electrochemical
etching in HF solution for silicon micromaching“,
sensors and actuators, A 102 (2002).
[Beale 1] M.I.J. Beale, N.G. Chew, M.J, Uren, A.G. Cullis, J.D.
Benjamin, “Microstructure and formation mechanism
of porous silicon“, Appl. Phys. Lett., 46, 86, (1985).
[Beale 2] M.I.J. Beale, J.D. Benjamin, M.J, Uren, N.G. Chew,
A.G. Cullis, “An experimental and theoretical study of
the formation and microstructure of porous silicon“, J.
Cryst. Growth. 73, 622 (1985).
49
[Behern] J. von Behren, L. Trubeskov, and P. M. Fauchet,
“Preparation and characterization of ultrathin porous
silicon films“, Appl. Phys. Lett., 66, 1662, (1995).
[Bell] T. E. Bell, P.T.J. Gennissen, D. DeMunter, M. Kuhl,
“Porous silicon as a sacrificial material“, J.
Micromech. Microeng., 6, 361, (1996).
[Chao] K. J. Chao, S. C. Kao, C. M. Yang, M. S. Hseu, and T.
G. Tsai, “Formation of High Aspect Ratio Macropore
Array on p-Type Silicon“, Electrochem. Solid-State
Lett., 3, 489, (2000).
[Chelnokov] A. Chelnokov, K. Wang, S. Rowson, P. Garoche, and
J. -M. Lourtioz, “Near-infrared Yablonovite-like
photonic crystals by focused-ion-beam etching of
macroporous silicon“, Appl. Phys. Lett., 77, 2943,
(2000).
[Fauthauer] R.W. Fauthauer, T. George, A. Ksendzov, and R.P.
Vasquez, “Visible luminescence from silicon waters
subjected to stain etches“, Appl. Phys. Lett., 60, 995
(1992).
[Gerischer] Gerischer, Heinz/Tobias, Charles W. “Advances in
electrochemical science and engineering.v.4“,
Weinheim,VCH Publishers, 1995
[Gomes] W. P. Gomes, F. Cardon, Prog. Surf. Sci, 12:155,
(1982).
[Grouing] U. Gruning, V. Lehmann, S. Ottow, and K. Busch,
50
“Macroporous silicon with a complete
two-dimensional photonic band gap centered at 5 µm“,
Appl. Phys. Lett., 68, 747, (1996).
[Halimaoui] A. Halimaoui, “Porous Silicon Science and
Technology“, edited by J. C. Vial and J. Derrien
(Springer-Verlag, Berlin), p33, (1995).
[Kern] W. Kern, D. Puotinen, “Cleaning solution based on
hydrogen peroxide for use in silicon semiconductor
technology“, RCA Rev., 31, 187, (1970).
[Kleimann] P. Kleimann, J. Linnros, S. Petersson, “Formation of
wide and deep pores in silicon by electrochemical
etching“, Mat. Sci. Eng. B69-70, 29-30(2000).
[Koukou] M. K. Koukou, N. Papayannakos, N. C. Markatos, M.
Bracht, N. M. Van Veen, and A. Roskam,
“Performance of ceramic membranes at elevated
pressure and temperature effect of non-ideal flow
conditions in a pilot scale membrane separator“, J.
Membr. Sci., 155, 241, (1999).
[Lang] Walter Lang, “Silicon microstructuring technology“,
Mater. Sci. Eng., R17, 1-55, (1996).
[Laurell] T. Laurell, L. Wallman, and J. Nilsson, “Design and
development of a silicon microfabricated flow-through
dispenser for on-line picolitre sample handling“, J.
Micromech. Microeng., 9, 369, (1999).
[Lehmann 1] V. Lehmann, H. Foll, “Formation mechanism and
51
properties of electrochemically etched trenches in
n-type silicon“, J. Electrochem. Soc., 137, 653, (1990).
[Lehmann 2] V. Lehmann, W. Honlein, R. Reisinger, A. Spitzer, H.
Wendt, and J. Willer, “A novel capacitor technology
based on porous silicon“, Thin Solid Films, 276, 138,
(1996).
[Lehmann 3] V. Lehmann, U. Gosele, “Porous silicon formation: A
quantum wire effect“, Appl. Phys. Lett., 58, 865,
(1991).
[Lehmann 4] V. Lehmann, “Porous silicon-a new material for
MEMS“, Micro Electro Mechanical Systems, 11-15
Feb, 1-6 (1996).
[Lehmann 5] V. Lehmann, J. Electrochem. Soc., 140, 2836, (1993).
[Miller] F. Miller, A. Birner, U. Gosele, V. Lehmann, S. Ottow,
and H. Foll, “Structuring of Macroporous Silicon for
Applications as Photonic Crystals“, J. Porous Mater.,
7, 201, (2000).
[Mizishima] I. Mizishima, T. Sato, S. Taniguchi, and Y.
Tsunashima, “Empty-space-in-silicon technique for
fabricating a silicon-on-nothing structure“, Appl. Phys.
Lett., 77, 3290, (2000).
[Ohji 1] H. Ohji, P. T. J. Gennissen, P. J. French, and K.
Tsutsumi, “Fabrication of a beam-mass structure using
single-step electrochemical etching for micro structures
(SEEMS) “, J. Micromech. Microeng., 10, 440, (2000).
52
[Ohji 2] H. Ohji, P.J. Trimp, P.J. French, “Fabrication of free
standing structure using single step electrochemical
etching in hydrofluoric acid“, Sens. Actuators A, 73,
95, (1999).
[Ohji 3] H. Ohij, P.J. French, K. Tsutsumi, “Fabrication of
mechanical structure in p-type silicon using
electrochemical etching“, Sens. Actuators A, 82, 254,
(2000).
[Parkhutik] V. P. Parkhutik, J. M. Albella, J. M. Martinez-Duart, J.
M. Gomez-rodriguez, A. M. Baro, V. I.
Shershulsky,“Different types of pore sstructure in
porous silicon“, Appl. Phys. Lett., 62, 366, (1993).
[Read] A. J. Read, R. J. Need, K. J. Naish, L. T. Canham, P. D.
J. Calcott, A. Qteish, “First-principles calculations of
the electronic properties of silicon quantum wires“,
Phys. Rev. Lett., 69, 1232, (1992).
[Rossi] A. M. Rossi, G. Amato, L. Boarino, and C. Novero,
“Realisation of membranes for atomic beam collimator
by macropore micromachining technique (MMT) “,
Mater. Sci. Eng., B69-70, 66, (2000).
[Rowson 1] S. Rowson, A. Chelnokov, J. M. Lourtioz,
“Macroporous silicon photonic crystals at 1.55 µm“,
Electron. Lett., 35, 753, (1999).
[Rowson 2] S. Rowson, A. Chelnokov, J. M. Lourtioz, “
Two-Dimensional Photonic Crystals in Macroporous
53
Silicon: From Mid-Infrared (10 m) to
Telecommunication Wavelengths (1.3-1.5 m) “, J.
Lightwave Technol., 17, 1989, (1999).
[Sanders] G. D. Sanders and Y. C. Chang, ”Theory of optical
properties of quantum wires in porous silicon”, Phys.
Rev. B, 45, 9202, (1992).
[Shih] S. Shih, K.H. Jung, T.Y. Hsieh, J. Sarathy, J.C.
Campbell, and D.L. Kwong, “Photoluminescence and
formation mechanism of chemically etched silicon“,
Appl.Phys. Lett., 60, 1863 (1992).
[Smith 1] R.L. Smith, S.D. Collins, “Porous silicon formation
mechanism“, J. Appl. Phys. 71, R1(1992).
[Smith 2] R.L. Smith, S.F. Chuang, S.D. Collins, “A theoretical
model of the formation morphologies of porous
silicon“, J. Electro. Mater. 17, 533, (1988).
[Steiner] P. Steiner, A. Richter, W. Lang, “Using porous silicon
as a sacrificial layer“, J. Micromech. Microeng., 3, 32,
(1993).
[Tomkiewicz] M. Tomkiewicz, J Electrochem. Soc, 126:2220, (1979).
[Traasatti] S. Traasatti, “The absolute electrode potential: an
explanatory note“, IUPAC Commission I. 3,
electrochemistry, (1984)
[Turner] D. R Turner, “Electropolishing silicon in hydrofluoric
acid solutions“, J. Electrochem. Soc., 105, 653, (1958).
[Uhlir] A. Uhlir, Bell Syst. Techn. J., 35, 333, (1956).
[Vazsonyi] E. Vazsonyi, E. Szilagyi, P. Petrik, Z.E. Horvath, T.
Lohner, M. Fried, G. Jalsovszky, “Porous silicon
formation by stain etching“, Thin Solid Films, 388,
295, (2001).
[Walker] J. A. Walker, “The future of MEMS in
telecommunications networks“, J. Micromech.
Microeng., 10, R1, (2000).
[Wu] 吳浩青, 李永舫編著, “電化學動力學“, 科技圖
書股份有限公司, p178-185, (2001).
[Xiao] Hong Xiao, “Introduction to semiconductor
manufacturing technology“, Pearson Education, p92,
(2000).
[Zhang] X. G. Zhang, S. D. Collins, R. L. Smith, “Porous
silicon formation and electropolishing of silicon by
anodic polarization in HF solution“, J. Electrochem.
Soc., 136, 1561, (1989).
指導教授 林景崎(J. C. Lin) 審核日期 2004-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明