博碩士論文 91323031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.16.130.242
姓名 周政宇(Cheng-Yu Chou)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 分流擠型製程對鋁合金與鋅合金微結構與機械性質之影響
(The effects of cross channel extrusion process on microstructures and mechanical properties of the Al and Zn-Al alloys)
相關論文
★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 冷加工與熱處理對AA7055鍛造型鋁合金微結構與機械性質的影響★ 冷抽量對AA7055(Al-Zn-Mg-Cu)-T6態合金腐蝕性質和微結構之影響
★ 熱力微照射製作絕緣層矽晶材料之研究★ 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響
★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究
★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究★ Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究
★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響
★ 恆溫蒸發熔煉鑄造製程合成鎂基介金屬化合物及其氫化特性之研究★ 無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響
★ 微量Sc對A356鑄造鋁合金機械性質之影響★ 熱處理對車用鋁合金材料熱穩定性與表面性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 細晶材料已被證實具有優越的機械或物理性質。製造細晶材料的方法眾多,但大多無法達到兼具塊狀、高角度晶界與次微米晶粒等優點。劇烈塑性變形乃藉由導入並累積大量塑性變形於材料而使之形成次微米結構之方法。數種劇烈塑性變形方法於近年來已被廣泛且深入的研究。分流擠形製程為一新穎的劇烈塑性變形製程,乃由李勝隆博士、本論文作者與其研究團隊所提出。該製程設計要點著重於改善製作細晶塊材之流程,以提升工業應用之效益。本論文之主要目的即為利用各種不同合金,深入探討細晶材料之變形特徵、擠製條件對擠製件微結構與機械性質之影響。
藉由觀察A356鋁合金擠製件之巨觀與微觀結構可得知,一道次擠製件之外側部位受到剪應力的影響而產生變形,中心部位則因擠製時材料由相對方向互相擠壓而形成一帶狀結構。經偶數擠製道次時,外側變形結構會回復至原本狀態,但帶狀結構之面積會因道次的累積而變的較複雜且逐漸成長。經量測十道次試片之微硬度可知,試片各處之微硬度具有相近數值,代表試片經多道次擠製後可得加工大致均勻之結構。
AA6061鋁合金經不同擠製條件加工後,可得0.2至3 μm大小的晶粒結構。當降低擠製溫度時,除了可得較小晶粒結構與較高角度晶界外,硬度與拉伸強度亦因回復作用效果降低而有較高的數值。當提升擠製道次時,因材料於模具內發生回復作用,導致晶粒結構較為等軸且粗化,硬度與拉伸強度些許下降。於擠製前進行固溶處理之試片,經於448 K溫度下擠製8道次再時效處理後,可得的最大拉伸強度為364 MPa,與傳統T6熱處理合金相比,擠製前固溶處理之試片因具有細晶結構與細小析出相,強度提升13%。
Zn-22%Al合金隨著擠製道次的增加,原本呈現層狀且分布不均的富鋁相轉變成顆粒狀且逐漸分布均勻,而較低的擠製溫度有助於形成較細小的富鋁相。細小且分佈均勻的富鋁相有助於提升其超塑性。當合金於373 K下擠製10道次後,於473 K 下以初始拉伸速度為5.0×10-3 s-1進行高溫拉伸測試時,可得最大的延伸率為1092%。
摘要(英) Fine-grained materials have attracted consideration interesting among researches, because the present of a large amount of grain boundary area in the materials results in unusual and extraordinary changes in both mechanical and physical properties. Numerous severe plastic deformation methods had been invented to produce fine-grained materials by introducing large plastic strains into bulk materials. Among them, the Cross-Channel Extrusion Process invented by Dr. Lee, the author of this dissertation and their group is a newly disclosed SPD method, which was currently designed to improve the procedure of fabricating bulk UFG materials.
In this dissertation, the main object is to establish a series of experiments to confirm the efficiency of the CCE process on achieving fine-grained materials with enhanced mechanical properties. The second objective is to study the metal flow of the extruded sample, which is much different from the other well-known methods. The further objective is to investigate the relationship among extrusion conditions, microstructures and mechanical properties of the series of experiments.
The metal flow and its characteristics are demonstrated by pure tin and A356 alloy. The 1-pass A356 sample shows a distorted structure except the by-punch area and a belt structure is also formed at the center of the sample. The deformation at the center portion of sample is caused by the material pressed in the opposite direction; the outer distorted portion is caused by shear stress. When the number of extrusion pass is even, the distorted structure recovers to initial state; however, the area of belt structure becomes larger and more complex with increasing extrusion passes. Further more, the whole area of extruding sample can be well deformed when the number of extrusion passes is increased to 10.
The AA6061 aluminum is applied to CCE process under various extrusion conditions. The fine-grained structures with the size between 0.2 and 3 μm are obtained after extruded for up to 8 passes at temperatures of 473 K~573 K. The finer grain structure with high angle boundaries is easier obtained when decreasing the extrusion temperature and increasing the number of extrusion passes. Hardness and tensile strength decrease with increasing extrusion temperature because working hardening rate is lowered, and they also decrease with increasing the number of extrusion passes because the grain structure is coarsened. When the Post-CCE ageing treatment is applied to the AA6061 alloy, the processed sample shows a tensile strength of 364 MPa which is 13% higher than commercial T6 treated sample since it consists of fine-grained matrix and precipitation hardening effect.
Superplasticity of a Zn-22%Al alloy is also discussed in this dissertation because it can be enhanced by finer grains. The finer and well-distributed Al-rich phase is obtained when decreasing the extrusion temperature and increasing the number of extrusion passes. At initial strain rates higher than 5.0×10-3 s-1, the finer and well-distributed Al-rich phase results in better superplasticity when tested at 473 K. The 10-pass sample extruded at 373 K shows a best superplasticity of 1092% in elongation when tested with a suitable initial strain rate of 5.0×10-3 s-1.
關鍵字(中) ★ 機械性質
★ 分流擠型
★ 劇烈塑性變形
★ 細晶塊材
關鍵字(英) ★ fine-grained material
★ severe plastic deformatio
論文目次 中文摘要....................................................................................................................... Ⅰ
Abstract............................................................ ............................................................. Ⅱ
Acknowledgement......................................................................................................... Ⅳ
Content........................................................................................................................... Ⅴ
Table list........................................................................................................................ Ⅸ
Figure list....................................................................................................................... Ⅹ
CHAPTER 1 Inrodution............................................................................................... 1
CHAPTER 2 Methods of severe plastic deformation and the formation of fine grained structure.....................................................................................
4
2.1 Methods of severe plastic deformation.............................................................. 6
2.1.1 T orsion straining under high pressure........................................................ 6
2.1.2 Accumulative roll bonding.......................................................................... 8
2.1.3 Reciprocating extrusion process.................................................................. 10
2.1.4 Equal channel angular extrusion (or pressing)............................................ 12
2.1.5 Rotary-die equal channel angular extrusion................................................ 15
2.1.6 Cross-channel extrusion............................................................................... 17
2.2 Formation of fine-grained structure................................................................... 21
2.2.1 Grain subdivision......................................................................................... 21
2.2.2 Effects of deformation conditions on microstructures................................. 24
2.2.3 Methods for determining the misorientation of grains................................ 34
2.3 Using SPD-produced nanostructured metals..................................................... 38
CHAPTER 3 Effects and deformation characteristics of cross-channel extrusion process on Al-7Si-0.3Mg alloy..............................................................
41
3.1 Motivation.......................................................................................................... 41
3.2 Introduction........................................................................................................ 42
3.2.1 Aluminum.................................................................................................... 42
3.2.2 Casting Al-7Si-0.3 Mg aluminum alloy....................................................... 42
3.2.3 Metal flow of ECAE.................................................................................... 45
3.3 Experimental procedures.................................................................................... 47
3.3.1 Materials...................................................................................................... 47
3.3.2 CCE die, equipments and processes............................................................ 48
3.3.3 Structures observation................................................................................. 53
3.3.4 Microhardness measurement....................................................................... 54
3.4 Results and discussions...................................................................................... 54
3.4.1 Deformation characteristics......................................................................... 54
3.4.2 Mechanical properties.................................................................................. 66
3.5 Conclusions........................................................................................................ 69
CHAPTER 4 Effects of cross-channel extrusion on microstructure and mechanical properties of AA6061 aluminum alloy.................................................. 70
4.1 Motivation.......................................................................................................... 70
4.2 Introduction........................................................................................................ 71
4.2.1 Wrought aluminum alloy............................................................................. 71
4.2.2 Wrought Al-Si-Mg alloys............................................................................ 72
4.3 Experimental procedures.................................................................................... 73
4.3.1 Material........................................................................................................ 73
4.3.2 CCE processes............................................................................................. 76
4.3.3 Microstructure observation.......................................................................... 78
4.3.4 Mechanical properties.................................................................................. 79
4.4 Results and discussions...................................................................................... 80
4.4.1 Microstructures of the extruded samples..................................................... 80
4.4.2 Effects of extrusion temperature and passes on microstructures................. 84
4.4.3 Mechanical properties of the extruded samples........................................... 89
4.5 Conclusions........................................................................................................ 95
CHAPTER 5 Effects of heat treatments on AA6061 aluminum alloy deformed by cross-channel extrusion.......................................................................... 97
5.1 Motivation.......................................................................................................... 97
5.2 Introduction........................................................................................................ 98
5.2.1 Heat treatments of aluminum alloys............................................................ 98
5.2.2 Precipitates in 6xxx aluminum alloy............................................................ 101
5.3 Experimental procedure..................................................................................... 101
5.3.1 CCE die and process.................................................................................... 102
5.3.2 Material........................................................................................................ 102
5.3.3 Heat treatments............................................................................................ 102
5.3.4 Microstructure observation and mechanical properties testing................... 103
5.4 Results and discussions...................................................................................... 104
5.5 Conclusions........................................................................................................ 114
CHAPTER 6 Effects of Cross-Channel Extrusion on microstructures and superplasticity of a Zn-22 wt.% Al eutectoid alloy............................... 115
6.1 Motivation.......................................................................................................... 115
6.2 Introduction........................................................................................................ 116
6.2.1 Short introduction of superplasicity............................................................. 116
6.2.2 Zn-Al alloy................................................................................................... 120
6.3 Experimental procedures.................................................................................... 121
6.3.1 Material........................................................................................................ 121
6.3.2 CCE process................................................................................................. 122
6.3.3 High temperature tensile test....................................................................... 122
6.3.4 Microstructure observation.......................................................................... 123
6.4 Results and discussions...................................................................................... 124
6.5 Conclusions........................................................................................................ 136
CHAPTER 7 General conclusions............................................................................... 137
CHAPTER 8 Future works.......................................................................................... 141
REFERENCES ............................................................................................................. 143
參考文獻 1. M. F. Bartholomeusz and J. A. Wert, Measurement of the compressive creep strain rates of the individual phases within a lamellar microstructure, Mater. Charact., 33 (1994) 377.
2. S. J. Zambo and J. A. Wert, Effects of Li concentration and a Mg addition on serrated flow in Al-Li alloys, Scr. Mater., 29 (1993) 1523.
3. M. Toshiji, W. Hiroyuki and H. Kenji, Mechanical properties at elevated temperatures in superplastically-deformed nanodispersion strengthened aluminum, Nanostructured Materials, 8 (1997) 1067.
4. D.B. Witkin and E.J. Lavernia, Synthesis and mechanical behavior of nanostructured materials via cryomilling, Prog. Mater. Sci., 51 (2006) 1.
5. T.S. Srivatsan, T.S. Sudarshan and E.J. Lavernia, Processing of discontinuously-reinforced metal matrix composites by rapid solidification, Prog. Mater. Sci., 39 (1995) 317.
6. P.S. Grant, Spray forming, Prog. Mater. Sci., 39 (1995) 497.
7. L. Lu, M.L. Sui and K. Lu, Superplastic extensibility of nanocrystalline copper at room temperature, Science, 287 (2000) 1463.
8. W.P. Tong, N.R. Tao, Z.B. Wang, J. Lu and K. Lu, Nitriding Iron at lower temperature, Science, 299 (2003) 686.
9. J.A. Wert, Q. Liu and N. Hansen, Dislocation boundaries and active slip system, Acta mater., 43 (1995) 4153.
10. Q. J., J.H. Han, Z. Guoding and J.C. Lee, Characteristic of textures evolution induced by equal channel angular pressing in 6061 aluminum sheets, Scr. Mater., 51 (2004)185.
11. C.Y. Yu, P.L. Sun, P.W. Kao and C.P. Chang, Mechanical properties of submicron-grained aluminum, Scr. Mater., 52 (2005) 359.
12. R.O.C patent NO.I273023.
13. R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103.
14. R.Z. Valiev, Nanostructuring of metals by severe plastic deformation for advanced properties, Nat. Mater. 3 (2004) 511.
15. A.P. Zhilyaev, S. Lee, G.V. Nurislamova, R.Z. Valiev and T. G. Langdon, Microhardness and microstructural evolution in pure nickel during high-pressure torsion, Scr. Mater., 44 (2001) 2753.
16. R.Z. Valiev, A.V. Sergueeva and A.K. Mukherjee, The effect of annealing on tensile deformation behavior of nanostructured SPD titanium, Scr. Mater., 49 (2003) 669.
17. I.V. Alexandrov, Y.T. Zhu, T.C. Lowe, R.K. Islamgaliev and R.Z. Valiev, Consolidation of nanometer sized powder using severe plastic torsional straining, Nanostructured Materias, 10 (1998) 45.
18. I.V. Alexandrov, Y. Zhu, T. Lowe, R.K. Islamgaliev, and R.Z. Valiev., Microstructures and properties of nanocomposites obtained through SPTS consolidation of powders, Metall. Mater. Trans., 29A (1998) 2253.
19. R.Z. Valiev, R.S. Mishra, J. Grosa, and A.K. Mukherjee, Process of nanostructurd nickel by severe plastic deformation consolidation of ball-milled powder, Scr. Mater., 34 (1995) 1443.
20. H. Shen, Z. Li, B. Gunther, A.V. Korznikov and R.Z. Valiev, Influence of powder consolidation methods on the structural and thermal properties of a nanophase Cu-50wt%Ag alloy, Nanostructured Materias, 6 (1995)385.
21. Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai, Novel ultra-high straining process for bulk materials- development of the accumulative roll-bonding (ARB) process, Acta mater.,47 (1999) 579.
22. S.H. Lee, Y. Saito, T. Sakai and H. Utsunomiya, Microstructures and mechanical properties on 6061 aluminum alloy processed by accumulative roll-bonding, Mater. Sci. Eng. A, 325 (2002)228.
23. J.A. del Valle, M.T. Pérez-Prado, and O.A. Ruano, Accumulative roll bonding of a Mg-based AZ61 alloy, Mater.Sci. Eng. A, 410-411 (2005) 353.
24. S.G. Chowdhury, A. Dutta, B. Ravikumar and A. Kumar, Textural evolution during accumulative roll bonding of an Al–Li alloy, Mater. Sci. Eng. A, 428 (2006) 351.
25. K.T. Park, H.J. Kwon, W.J. Kim and Y.S. Kim, Microstructure characteristics and thermal stability of ultrafine grained 6061 Al alloy fabricated by accumulative roll bonding process, Mater. Sci. Eng. A, 316 (2001) 145.
26. R. Zhang, and L.V. Acoff, Processing sheet materials by accumulative roll bonding and reaction annealing from Ti/Al/Nb elemental foils, Mater. Sci. Eng. A, 463 (2007) 67.
27. H.S. Chu, K.S. Liu and J.W. Yeh, Aging behavior and tensile properties of 6061Al–0.3 μm Al2O3p particle composites produced by reciprocating extrusion, Scr. Mater., 45 (2001) 54.
28. S.W. Lee, Y.L. Chen, H.Y. Wang, C.F. Yang and J.W. Yeh, On mechanical properties and superplasticity of Mg–15Al–1Zn alloys processed by reciprocating extrusion, Mater. Sci. Eng. A, 464 (2007) 76.
29. S.Y. Yuan, C.H. Peng and J.W. Yeh, Synthesis of fine Pb-50vol.-%Sn alloys by a new process of reciprocating extrusion, Mater. Sci. and Technol., 15 (1999) 683.
30. J.W. Yeh, S.Y. Yuan and C.H. Peng, A reciprocating extrusion process for producing hypereutectic Al–20wt.% Si wrought alloys, Mater. Sci. Eng. A, 252 (1998) 212.
31. Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon, The process of grain refinement in equal-channel angular pressing, Acta Mater., 46 (1998) 3317.
32. M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, N.K. Tsenev, R.Z. Valiev and T.G. Langdon, Structural evolution and the Hall-Petch relationship in an Al-Mg-Li-Zr alloy with ultra-fine grain size, Acta Mater., 45 (1997) 4751.
33. P.L. Sun, P.W. Kao and C.P. Chang, Characteristics of submicron grained structure formed in aluminum by equal channel angular extrusion, Mater. Sci. Eng. A, 283 (2000) 82.
34. J. Gubicza, N.Q. Chinh, P. Szommer, A. Vinogradov and T.G. Langdon, Microstructural characteristics of pure gold processed by equal-channel angular pressing, Scr. Mater., 56 (2007) 947.
35. S.X. McFadden, R.S. Mishra, R.Z. Valiev, A.P. Zhilyaev and A.K. Mukherjee, Low-temperature superplasticity in nanostructured nickel and metal alloys, Nature, 398 (1999) 684.
36. Y.M. Wang, M.W. Chen, F.H. Zhou and En Ma, High tensile ductility in a nanostructured metal, NATURE, 419 (2002) 912.
37. B.S. Lee, M.H. Kim, S.K. Hwang, S.I. Kwun and S.W. Chae, Grain refinement of commercially pure zirconium by ECAP and subsequent intermediate heat treatment, Mater. Sci. Eng. A, 449-451 (2007) 1087.
38. H.R.Z. Sandim, H.H. Bernardi, B. Verlinden and D. Raabe, Equal channel angular extrusion of niobium single crystals, Mater. Sci. Eng. A, 467 (2007) 44.
39. J. Gubicza, I. Schiller, N.Q. Chinh, J. Illy, Z. Horita and T.G. Langdon, The effect of severe plastic deformation on precipitation in supersaturated Al–Zn–Mg alloys, Mater. Sci. Eng. A, 460–461 (2007) 77.
40. P. Leoa, E. Cerri, P.P. De Marcoa and H.J. Roven, Properties and deformation behaviour of severeplastic deformed aluminium alloys, J. Mater. Process. Technol., 182 (2007) 207.
41. M. Mabuchi, K. Ameyama, H. Iwasaki and K. Higashi, Low temperature superplasicity of AZ91 magnesium alloy with non-equilibrium grain boundaries, Acta Mater., 47 (1999) 2047.
42. V.M. Skripnyuk, E. Rabkin, Y. Estrin and R. Lapovok, The effect of ball milling and equal channel angular pressing on the hydrogen absoption/desorption properties of Mg-4.95 wt% Zn-0.71 wt% Zr (ZK60) alloy, Acta Mater., 52 (2004) 405.
43. S.N. Mathaudhu, K.T. Hartwig and I. Karaman, Consolidation of blended powders by severe plastic deformation to form amorphous metal matrix composites, J. Non-Cryst. Solids 353 (2007) 185.
44. X. Wu and K. Xia, Back pressure equal channel angular consolidation - Application in producing aluminum matrix composites with fine flyash particles, J. Mater. Process. Technol., 192-193 (2007) 355.
45. M. Saravanan, R.M. Pillai, K.R. Ravi, B.C. Pai and M. Brahmakumar, Development of ultrafine grain aluminium–graphite metal matrix composite by equal channel angular pressing, Compos. Sci. Technol. 67 (2007) 1275.
46. K. Morsi and S. Goyal, Equal channel angular pressing followed by combustion synthesis of titanium aluminides, J. Alloy. Compd. 429 (2007) L1–L4.
47. S.Y. Chang, K.S. Lee, S.H. Choi and D.H. Shin, Effects of ECAP on microstructure and mechanical properties of a commercial 6061 Al alloy produced by powder metallurgy, J. Alloy. Compd., 354 (2003) 216.
48. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T.G. Langdon, Principle of equal-channel angular pressing for the processing of ultra-fine grained materials, Scr. Mater., 35 (1996) 143.
49. K. Nakashima, Z. Horita, M. Nemoto and T.G. Langdon, Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing, Acta Mater., 46 (1998) 1589.
50. Y. Nishida, S. Kumpe and Tsunemichi, Large deformation apparatus, the deformation methid and the deformed metallic materials, US Patent 6,209,379 (2001).
51. A. Ma, Y. Nishida, K. Suzuki , I. Shigematsu, and N. Saito, Characteristics of plastic deformation by rotary-die equal-channel angular pressing, Scr. Mater., 52 (2005) 433.
52. A. Ma, N. Saito, M. Takagi, Y. Nishida, H. Iwata, K. Suzuki, I. Shigematsu and A. Watazu, Effect of severe plastic deformation on tensile properties of a cast Al–11 mass% Si alloy, Mater. Sci. Eng. A, 395 (2005) 70.
53. A. Ma, K. Suzuki, Y. Nishida, N. Saito, I. Shigematsu, M. Takagi , H. Iwata, A. Watazu and T. Imura, Impact toughness of an ultrafine-grained Al–11mass%Si alloy processed by rotary-die equal-channel angular pressing, Acta Mater., 53 (2005)211.
54. A. Ma, Y. Nishida, J.H. Jiang, N. Saito, I. Shigematsu and A. Watazu, Deformation mechanism at impact test of Al-11% Si alloy processed by equal-channel angular pressing with rotary die, Transactions of Nonferrous Metals Society of China, 17 (2007) 104.
55. C. Y. Chou, S. L. Lee and J. C. Lin, Effects and deformation characteristics of cross-channel extrusion process on pure Sn and Al–7Si–0.3Mg alloy, Mater. Chem. Phys. (2007), doi:10.1016/j.matchemphys.2007.07.022
56. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen and A.D. Rollett, Current issues in recrystallization: a review, Mater. Sci. Eng. A, 238 (1997) 219.
57. D.A. Hughes, and N. Hansen, High angle boundaries formed by grain subdivision mechanisms, Acta Mater., 45 (1997) 3871.
58. Y. Iwahashi, Z. Horita, M. Nemoto, and T. G. Langdon, An investigation of microstructural evolution during equal-channel angular pressing. Acta mater., 45 (1997) 4733.
59. C.P. Chang, P.L. Sun, and P.W. Kao, Deformation induced grain boundaries in commercially pure aluminum, Acta Mater., 48 (2000) 3377.
60. A. Yamashita, D. Yamaguchi, Z. Horita and T.G. Langdon, Influence of pressing temperature on microstructure development in equal-channel angular pressing, Mater. Sci. Eng. A, 287 (2000) 100.
61. Y.C. Chen, Y.Y. Huang, C.P. Chang and P.W. Kao, The effect of extrusion temperature on the development of deformation microstructure in 5052 aluminum alloy processed by equal channel angular extrusion, Acta Mater., 51 (2003) 2005.
62. P.B. Berbon, M. Furukawa, Z. Horita, M. Nemoto and T.G. Langdon, Influence of pressing speed on microstructural development in equal-channel angular pressing, Metal. Mater. Trans., 30A (1999) 1989.
63. M. Furui, H. Kitamura, H. Anada and T.G. Langdon, Influence of preliminary extrusion conditions on the superplastic properties of a magnesium alloy processed by ECAP, Acta Mater. 55 (2007) 1083.
64. T.G. Langdon, The principles of grain refinement in equal-channel angular pressing, Mater. Sci. Eng. A, 462 (2007) 3.
65. P.W.J. Mckenzie, R. Lapovok, and Y. Estrin, The influence of back pressure on ECAP processed AA 6016:Modeling and experiment, Acta Mater., 55 (2007) 2985.
66. R.K. Oruganti, P.R. Subramanian, J.S. Marte, Michael F. Gigliotti and Sundar Amancherla, Effect of friction, backpressure and strain rate sensitivity on material flow during equal channel angular extrusion, Mater. Sci. Eng. A, 406 (2005) 102.
67. S. Dumoulin, H.J. Roven, J.C. Werenskiold and H.S. Valberg ,Finite element modeling of equal channel angular pressing- Effect of material properties friction and die geometry, Mater. Sci. Eng. A, 410–411 (2005) 248.
68. T.C. Chang , J.Y. Wang, C.L. Chu and S. Lee, Mechanical properties and microstructures of various Mg–Li alloys, Mater. Lett. 60 (2006) 3272.
69. Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langdon, Factors influencing the equilibrium grain size in equal-channel angular pressing: role of Mg additions to Aluminum, Metall. Mater. Trans. A, 29A (1998) 2503.
70. H.B. Geng, S.B. Kang and B.K. Min, Hight temperature tensile behavior of ultra-fine grained Al-3.3Mg-0.2Sc-0.2Zr alloy by equal channel angular pressing, Mater. Sci. Eng., A373 (2004) 229.
71. K.T. Park, D.Y. Hwang, Y.K. Lee, Y.K. Kim and D.H. Shin, High strain rate superplasticity of submicrometer grained 5083 Al alloy containing scandium fabricated by severe plastic deformation, Mater. Sci. Eng., A341 (2003) 273.
72. S.W. Lee and J.W. Yeh, Superplasticity of 5083 alloys with Zr and Mn additions produced by reciprocating extrusion, Mater. Sci. Eng. A, 460-461 (2007) 409.
73. M.J. Jones and F.J. Humphreys, Interaction of recrystallization and precipitation:The effect of Al3Sc on the recrystallization behavior of deformed Aluminum, Acta Mater., 51 (2003) 2149.
74. M. Cabibbo, E. Evangelista, and M. Vedani, Influence sof severe plastic deformations on secondary phase precipitation in a 6082 Al-Mg-Si alloy, Metal. Mater. Trans., 36A (2005) 1353.
75. W.J. Kim and J.Y. Wang, Microstructure of the post-ECAP aging processed 6061 Al alloys, Mater. Sci. Eng. A, 464 (2007) 23.
76. C.Z. Xu, Q.J. Wang, M.S. Zheng, J.W. Zhu, J.D. Li, M.Q. Huang, Q.M. Jia and Z.Z. Du, Microstructure and properties of ultra-fine grain Cu–Cr alloy prepared by equal-channel angular pressing, Mater. Sci. Eng. A, 459 (2007) 303.
77. S.V. Dobatkin, O.V. Rybal’chenko and G.I. Raab, Structure formation, phase transformations and properties in Cr–Ni austenitic steel after equal-channel angular pressing and heating, Mater. Sci. Eng. A, 463 (2007) 41.
78. Z.Z. Jiang, S.H. Yu, Y.B. Chun, D.H. Shin and S.K. Hwang, Grain refinement of pure vanadium by equal channel angular pressing, Mater. Sci. Eng. A, (2007) doi:10.1016/j.msea.2007.06.052
79. S.V. Dobatkin, J.A. Szpunar, A.P. Zhilyaev, J.Y. Cho and A.A. Kuznetsov, Effect of the route and strain of equal-channel angular pressing on structure and properties of oxygen-free copper, Mater. Sci. Eng. A, 462 (2007) 132.
80. S. Zaefferer, New developments of computer-aided crystallographic analysis in transmission electron microscopy, J. Appl. Crystal. 33 (2000) 10.
81. Q. Liu, A simple method for determining orientation and misorientation of the cubic crystal specimen, J. Appl. Crystal. 27 (1994) 755.
82. Y.Y. Wang, P.L. Sun, P.W. Kao and C.P. Chang, Effect of deformation temperature on the microstructure developed in commercial purity aluminum processed by equal channel angular extrusion, Scr. Mater. 50 (2004) 613.
83. K. Máthis and E.F. Rauch, Microstructural characterization of a fine-grained ultra low carbon steel, Mater. Sci. Eng. A, 462 (2007) 248.
84. J.R. Bowen, A. Gholinia, S.M. Roberts and P.B. Prangnell, Analysis of the billet deformation behaviour in equal channel angular extrusion, Mater. Sci. Eng. A, 287 (2000) 87.
85. A. Gholinia, P.B. Prangnell and M.V. Markushev, The effect of strain path on the development of deformation structures in severely deformation aluminum alloys processed by ECAE, Acta Mater., 48 (2000) 1115.
86. T.C. Lowe and Y.T. Zhu, Commercialization of nanostructured metals produced by severe plastic deformation processing, Adv. Eng. Mater. 5 (2003) 373.
87. Y. Wang, E. Ma, R.Z. Valiev and Y.T. Zhu, Tough nanostructured metals at cryogenic temperatures, Adv. Mater. 16 (2004) 328.
88. B. Kockar, I. Karaman, A. Kulkarni, Y. Chumlyakov and I.V. Kireeva, Effect of severe ausforming via equal channel angular extrusion on the shape memory response of a NiTi alloy, J. Nucl. Mater. 361 (2007) 298.
89. C. Xu, M. Furukawa, Z. Horita, and T.G. Langdon, Using ECAP to achieve grain refinement, precipitate fragmentation and high strain rate superplasticity in a spray-cast aluminium alloy, Acta Mater. 51 (2003) 6139.
90. W.J. Kim and Y.K. Sa, Micro-extrusion of ECAP processed magnesium alloy for production of high strength magnesium micro-gears, Scr. Mater. 54 (2006) 1391.
91. Y.T. Zhu et al., Ultrafine-grained titanium for medical implants, US Patent 6,399,215 (2000).
92. C.Y. Yang, S.L. Lee, C.K. Lee and J.C. Lin, Effects of Sr and Sb modifiers on the sliding wear behavior of A357 alloy under varying pressure and speed conditions, Wear, 261 (2006) 1348.
93. D.A. Dranger, R.R. Sawtell and M.M. Kersker, Effects of beryllium on the properties of A357.0 castings, AFS Trans., 92 (1984) 579.
94. S.D. McDonald, K. Nogita and A.K. Dahle, Eutectic nucleation in Al-Si alloys, Acta Mater., 52 (2004) 4273.
95. J. Wang, S. He, B. Sun, K. Li, D. Shu and Y. Zhou, Effect of melt thermal treatment on hypoeutectic Al-Si alloys, Mater. Sci. Eng. A, 338 (2002) 101.
96. Kazuhiro Nogita, Stuart D. McDonald, Arne K. Dahle, Eutectic Modification of Al-Si alloys with Rare Earth Metals, Mater. Trans., 45 (2004) 323.
97. A.K. Dahle, K. Nogita, S.D. McDonald, C. Dinnis and L. Lu, Eutectic modification and microstructure development in Al-Si alloys, Mater. Sci. Eng. A, 413-414 (2005) 243.
98. C.Y. Yang, S.L. Lee, C.K. Lee and J.C. Lin, Effects of Be and Fe on the mechanical and corrosion behaviors of A357 alloys, Mater. Chem. Phys., 93 (2005) 412.
99. P.S. Wang, S.L. Lee, C.Y. Yang and J.C. Lin, Effect of Be and non-equilibrium heat treatment on mechanical properties of B319.0 alloy with 1.0﹪Fe, Mater. Sci. Technol., 20 (2004) 539.
100. B.S. Moon, H.S. Kim, S.I. Hong, Plastic flow and deformation homogeneity of 6061 Al during equal channel angular pressing, Scr. Mater. 46 (2002) 131.
101. H.S. Kim, M.H. Seo and S.I. Hong, Plastic deformation analysis of matels during equal channel angular pressing, J. Mater. Process. Technol., 113 (2001) 622.
102. Y.L. Yang and S. Lee, Finite element analysis of strain conditions after equal channel angular extrusion, J. Mater. Process. Technol., 140 (2003) 583.
103. V. M. Segal, Materials processing by simple shear, Mater. Sci. Eng. A, 197 (1995) 157
104. L. Lodgaard, N. Ryum, Precipitation of dispersoids containing Mn and/or Cr in Al-Mg-Si alloys, Mater. Sci. Eng. A, 283 (2000) 144.
105. L. Zhen, S.B. Kang, DSC analyses of the precipitation behavior of two Al-Mg-Si alloys naturally aged for different time, Mater. Lett. 37 (1998) 349.
106. R.A. Jeniski, J.R. B. Thanaboonsombut, and T.H. Sanders, JR., The effect of iron and manganese on the recrystalliztion behavior of hot-rolled and solution-heat-treated aluminum alloy 6013, Metall. Mater. Trans., 27A (1996) 19.
107. D. Jiang and C. Wang, Influence of microstructure on deformation behavior and fracture mode of Al-Mg-Si alloys, Mater. Sci. Eng. A, 352 (2003) 29.
108. K. Matsuda, D. Teguri, Y. Uetani, T. Sato and S. Ikeno, Cu-segregation at the Q’/α-Al interface in Al-Mg-Si-Cu alloy, Scr. Mater. 47 (2002) 833.
109. Z. Horita, T. Fujinami, M. Nemoto, and T.G. Langdon, Improvement of mechanical properties for Al alloys using equal-channel angular pressing, J. Mater. Process. Technol., 117 (2001) 288-292
110. S.Y. Yuan, J.W. Yeh and C.H. Tsau, Improved microstructure and mechanical properties of 2024 aluminum alloy produced by a reciprocating extrusion method, Mater. Trans., 40 (1999) 233.
111. John E. Hatch, Aluminum: Properties and Physical Metallurgy, ASM International, Metals Park, Ohio, 1984, p.362.
112. J. Adrien, E. Maire, R. Estevez, J.C. Ehrstrom and T. Warner, Influence of the thermomechaincal treatment on the microplastic behavior of a wrought Al-Zn-Mg-Cu alloy, Acta mater. 52 (2004) 1653.
113. A. smolej, M. Gnamus, E. Slacek, The influence of the thermomechanical process and forming parameters on superplastic behavior of the 7475 aluminum alloy, J. Mater. Processing Technol., 118 (2001) 397.
114. O. Engler and J. Hirsch, Texture control by thermomechanical processing of AA6xxx Al–Mg–Si sheet alloys for automotive applications - a review, Mater. Sci. Eng. A336 (2002) 249.
115. M.J. Jones and F.J. Humphreys, Interaction of recrystallization and precipitation:The effect of Al3Sc on the recrystallization behavior of deformed Aluminum, Acta Mater., 51 (2003) 2149.
116. Z. Yin, Q. Pan, Y. Zhang, F. Jiang, Effect of minor Sc and Zr on the microstructure and mechanical properties of Al-Mg based alloys, Mater. Sci. Eng. A280 (2000) 151.
117. V. Ocenasek, and M. Slamova, Resistance to recrystallization due to Sc and Zr addition to Al-Mg Alloys, Mater. Charact., 46 (2001) 157.
118. S. Ferrasse, V.M. Segal, K.T. Hartwig and R.E. Goforth, Development of a submicrometer-grained microstructure in aluminum 6061 using equal channel angular extrusion, J. Mater. Res., 12 (1997) 1253.
119. C.S. Chung, J.K. Kim, H.K. Kim and W.J. Kim, Improvement of high-cycle fatigue life in a 6061 Al alloy produced by equal channel angular pressing, Mater. Sci. Eng., A337 (2002) 39.
120. G.A. Edwards, K. Stiller, G.L. Dunlop and M.J. Couper, The precipitation sequence in Al-Mg-Si alloys, Acta Mater. 46 (1998) 3893.
121. W.F. Miao and D.E. Laughlin, Precipitation hardening in aluminum alloy 6022, Scr. Mater., 40 (1999) 873.
122. A. Perovic, D.D. Perovic, G.C Weatherly and D.J. Lloyd, Precipitation in aluminum alloys AA6111 and AA6016, Scr. Mater., 41 (1999) 873.
123. C. Cayron and P.A. Buffat, Transmission electron microscopy study of the β’ phase (Al-Mg-Si alloys) and QC phase (Al-Cu-Mg-Si alloys): ordering mechanism and crystallographic structure, Acta Mater., 48 (1999) 1537.
124. D.J. Chalrabarti and D.E. Laughlin, Phase relations and precipitation in Al-Mg-Si alloys with Cu additions, Prog. Mater. Sci., 49 (2004) 389.
125. N. Maruyama, R. Uemori, N. Hashimoto, M. Saga and M. Kikuchi, Effect of silicon addition on the composition and structure of fine-scale precipitates in Al-Mg-Si alloys, Srr. Mater., 36 (1996) 89.
126. S.J. Andersen, H.W. Zandbergen, J.Jansen, C. Traeholt, U. Tundal and O. Reiso, The crystal structure of the β” phase in Al-Mg-Si alloys, Acta Mater., 46 (1998) 3283.
127. M. Murayama and K. Hono, Pre-precipitate clusters and precipitation process in Al-Mg-Si alloys, Acta Mater., 47 (1999) 1537.
128. J.K. Kim, H.G. Jeong, S.I. Hong, Y.S. Kim, and W.J. Kim, Effect of aging treatment on heavily deformed microstructure of a 6061 aluminum alloy after equal channel angular pressing, Scr. Mater., 45 (2001) 901.
129. C.Y. Yu, P.W. Kao and C.P.Chang, Transition of tensile deformation behaviors in ultrafine-grained aluminum, Acta Mater., 53 (2005) 4019.
130. B. Hadzima, M. Janecek, Y. Estrin and H.S. Kim, Microstructure and corrosion properties of ultrafine-grained interstitial free steel, Mater. Sci. Eng., A462 (2007) 243.
131. X. Cheng, Z. Li and G. Xiang, Dry sliding wear behavior of TiNi alloy processed by equal channel angular extrusion, Materials and Design 28 (2007) 2218.
132. http://www.mse.mtu.edu/~drjohn/sp/intro/index.html
133. T.K. Ha, J.R. Son, W.B. Lee, C.G. Park and Y.W. Chang, Superplastic deformation of a fine-grained Zn-0.3wt.%Al alloy at room temperature, Mater. Sci. Eng., A307 (2001) 98.
134. M.T. Abou El-khair, A. Daoud and A. Ismail, Effect of different Al contents on the microstructure , tensile and wear properties of Zn-based alloy, Mater. Lett., 58 (2004) 1754.
135. S.R. Casolco, J. Negrete-Sanchez and G. Torres-Villasenor, Influence of silver on the mechanical properties of Zn-Al eutectoid superplastic alloy, Mater. Charac., 51 (2003) 63.
136. P. Malek, The deformation structure of the superplastic Zn-Al alloy, Mater. Sci. Eng., A268 (1999) 132.
137. M. Furukawa, Y. Ma, Z. Horita, M. Nemoto, R.Z. Valiev and T.G. Langdon, Microstructural and characteristics and superplastic ductility in a Zn-22% Al alloy with submicrometer gain size, Mater. Sci. Eng., A241 (1998) 122.
138. P. Kumar, C. Xu and T.G. Langdon, The significance of grain boundary sliding in the superplastic Zn-22% Al alloy after processing by ECAP, Mater. Sci. Eng., A410-411 (2005) 447.
指導教授 李勝隆(Sheng-long Lee) 審核日期 2008-1-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明