博碩士論文 91323041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:67 、訪客IP:3.19.31.73
姓名 洪稚鵬(Chee-Peng Ang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 短玻璃纖維強化聚醯胺66複合材料機械性質 之研究
(The Study of Mechanical Properties in Short Glass Fiber Reinforced Polyamid 66 Composites)
相關論文
★ 三次元量床之虛擬儀器教學與訓練系統之設計與開發★ 駕駛模擬器技術開發及其在駕駛行為研究之應用
★ 電源模組老化因子與加速試驗模型之研究★ 應用駕駛模擬器探討語音防撞警示系統 對駕駛行為之影響
★ 遠距健康監測與復健系統之開發與研究★ 藥柱低週疲勞特性與壽限評估模式之研究
★ 非接觸式電子經緯儀電腦模擬教學系統之研究★ 適應性巡航控制系統對於駕駛績效影響之研究
★ 車輛零組件路況模擬系統之開發研究★ 應用殘障駕駛模擬器探討失衡路況對人體重心影響之研究
★ 聚縮醛(POM)機械性質之射出成型條件最佳化研究★ 駕駛模擬儀之開發驗證及應用於駕駛疲勞之研究
★ 即時眼部狀態偵測系統之研究★ 短玻璃纖維強化聚縮醛射出成型條件最佳化與機械性質之研究
★ 手推輪椅虛擬實境系統開發之研究★ 應用駕駛績效預測車輛碰撞風險之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 聚醯胺66 (Nylon 66,尼龍66)隨著玻璃纖維強化後,其機械性質與物理特性大幅提升,新的用途正在不斷的被開發中。本研究將運用三種不同重量百分率之短玻璃纖維強化Nylon 66 (0 wt.%、13 wt.%和33 wt.%),利用射出成型加工方法及傳統實驗設計法,探討保壓壓力、融膠溫度、充填時間與模具溫度等四個參數對於Nylon 66複合材料機械性質之影響的研究,並評估出理想的射出成型製程條件。實驗項目包括準靜態拉伸、高應變拉伸及破壞韌性等三項。主要研究結果如下:
於準靜態拉伸實驗中發現,對於未強化Nylon 66 及Nylon 66 / GF複合材料,當融膠流動方向平行於受力方向,則該試片之抗拉強度、楊氏模數及伸長率等機械性質,均優於融膠流動方向平行於受力方向之試片,而Nylon 66 / 13 wt.%GF具有最小的伸長率。未強化Nylon 66最佳射出成型參數為:融膠溫度265℃、模具溫度105℃、充填時間2.5 s及保壓壓力42 MPa。Nylon 66 / GF最佳射出成型參數為:融膠溫度290℃、模具溫度60℃、充填時間2.5 s及保壓壓力42 MPa。
於高應變拉伸實驗中發現,未強化Nylon 66 及Nylon 66 / GF複合材料的抗拉強度隨應變速率的增加而上升。同時,並發現未強化Nylon 66的伸長率隨拉伸速率的增加而下降,而Nylon 66 / GF在則是隨拉伸速率的增加而上升。各射出成型參數整體趨勢相似於準靜態拉伸性質。
本研究兩種Nylon 66 / GF複合材料在厚度3.6 mm時,即可求得平面應變破壞韌性。未強化Nylon 66因基地為高延性及韌性的材質,所以具有良好的破壞韌性,與Nylon 66 / 33 wt.%GF的破壞韌性相近,而Nylon 66 / 13 wt.%GF的破壞韌性則明顯較低, Nylon 66 / GF最佳射出成型參數為:融膠溫度於275℃、模具溫度75℃、充填時間0.5 s及保壓壓力34 MPa。
關鍵字(中) ★ 尼龍 66
★ 短玻璃纖維
★ 聚醯胺 66
關鍵字(英) ★ Nylon 66
★ Short Glass Fiber
★ PA 66
論文目次 摘要 I
誌謝 III
總目錄 IV
圖目錄 VI
表目錄 X
符號說明 XI
第一章 前言 1
1-1 研究動機與目的 1
1-2 論文架構 3
第二章 文獻回顧與理論說明 5
2-1 Nylon 66複合材料之應用與研究 5
2-2 塑膠複合材料的破壞行為 11
第三章 實驗方法與步驟 14
3-1 實驗材料與試片準備 14
3-2 成型條件範圍之擬定 15
3-3 模具設計 18
3-4 準靜態拉伸試驗方法 19
3-5 高應變率拉伸試驗方法 20
3-6 破壞韌性試驗方法 20
第四章 實驗結果與討論 23
4-1 纖維排向觀察 23
4-2 準靜態拉伸性質 24
4-3 高應變率拉伸性質 31
4-4 破壞韌性 34
第五章 結論與未來發展方向 38
5-1 結論 38
5-2 未來發展方向 40
參考文獻 43
參考文獻 1.塑網,塑膠指南 > 工程塑膠,上網日期:民國92年11月10日,網址http://www.ibuyplastic.com/.
2.台灣區人造纖維製造工業同業公會,新纖維 > 尼龍66開發方向--功能化,上網日期: 民國92年11月25日,網址:http://www.tmmfa.org.tw/.
3.K. Tohgo, D. Fukuhara, and A. Hadano, “The influence of debonding damage on fracture toughness and crack-tip field in glass-particle-reinforced Nylon 66 composites,” Composites Science and Technology, Vol. 61, 2001, pp. 1005-1016.
4.K. Noda, A. Takahara, and T. Kajiyama, “ Fatigue failure mechanisms of short glass fiber reinforced Nylon 66 based on nonlinear dynamic viscoelastic measurement,” Polymer ,Vol. 42 , 2001, pp. 5803-5811.
5.C. J. Hooke, S. N. Kukureka, P. Liao, M. Rao, and Y. K. Chen,“Wear and friction of nylon-glass fiber composites in non-conformal contact under combined rolling and sliding,” Wear, Vol.197 , 1996,pp. 115-122.
6.S. N. Kukureka, C. J. Hooke, M. Rao, P. Liao, and Y. K. Chen,“The effect of fibre reinforcement on the friction and wear of polyamide 66 under dry rolling–sliding contact,” Tribology International, Vol. 32 , 1999, pp. 107–116.
7.H. Nuriel, N. Klein, and G. Marom, “The effect of the transcrystalline layer on the mechanical properties of composite materials in the fibre direction” Composites Science and Technology, Vol. 59, 1999, pp. 1685-1690.
8.王耀章,以不同長度之玻璃纖維補強NYLON 66 射出成型纖維長度與配向對機械性質之影響,逢甲大學紡織工程研究所,碩士論文,民國78年。
9.S. Lee and B.C. Chun, “Mechanical properties and fracture morphologies of poly (phenylene sulfide)/Nylon66 blends-effect of Nylon66 content and testing temperature,” Journal of Materials Science, Vol. 35, 2000, pp. 1187-1193.
10.C. M. Bordonaro and E. Krempl, “Rate-dependent mechanical behavior of plastics: A comparison between 6/6 nylon, polyetherimide and polyetheretherketone,” American Society of Mechanical Engineers, Vol. 46, 1993, pp. 43-56.
11.B. M. Donald and B. O. Michael, “Experimental characterization of strain rate dependent properties of fiber-reinforced nylon composites” International SAMPE Technical Conference, Vol. 23, 1991, pp. 184-195.
12.S. A. Hitchen and S. L. Ogin, “Damage accumulation during the fatigue of an injection moulded Glass/Nylon composite,” Composites Science and Technology, Vol. 47, 1993, pp. 83-89.
13.D. P. Russell and P. W. R. Beaument, “Structure and properties of injection -molded Nylon 6 II : Residual Stresses in Injection-Molded Nylon 6,”Journal of Materials Sciences, Vol. 15, 1980, pp. 208-215.
14.H. W. Cox and C. C. Mentzer, “Injection Molding: The effect of fill time on properties,” Polymer Engineering and Science, Vol. 26, No. 7, 1986, pp. 488-498.
15.黃振隆,ABS/PC及ABS/Nylon摻合物之研究,國立清華大學/化學工程研究所,碩士論文,民國74年。
16.M. A. Ramos and F. A. Belmontes, “Polypropylene/low density polyethylene blend matrices and short glass fiber based composites .III:Morphology and fiber orientation,” Polymer Composites, Vol. 12, No. 1, 1991, pp. 7-12.
17.H. D. Espinosa, G. Emore and Y. Xu, “High strain rate behavior of composites with continuous fibers,” The American Society of Mechanical Engineers, Vol. 48, 1995, pp. 7-18.
18.P. J. Hogg, “The influence of flow-induced anisotropy on the impact behavior of injection-moulded short-fibre composites,” Composites Science and Technology, Vol. 29, 1987, pp. 89-102.
19.S. M. Lee and P. Zahuta, “Instrumented impact and static indentation of composites,” Journal of Composite Materials, Vol. 25, 1991, pp. 205-222.
20.J. L. Doong, S. N. S. Lin and H. L. Marcus, "Residual stress effect on impact properties of Gr/Al mental matrix composite," Journal of Materials Science, Vol. 27, 1992, pp. 1369-1374.
21.D. M. Bigg, “The impact behavior of thermoplastic sheet composites,” Journal of Reinforced Plastics and Composites, Vol. 13, 1994, pp. 339-354.
22.M. Gupta and K. K. Wang, “Fiber Orientation and Mechanical Properties of Short Fiber Reinforced Injection Molded Composites: Simulation and Experimental Results,” Polymer Composites, Vol. 14, 1993, pp. 367-382.
23.A. N. Alexandrou and A. Ahmed, “Injection molding using a generalized eulerian lagrangian formulation,” Polymer Engineering and Science, Vol. 33, 1993, pp. 1055-1064.
24.M. C. Altan, S. Subbiah. S. I. Guceri, and R.B. Pipes, “Numerical prediction of three-dimensional fiber orientation in hele-shaw flows,” Polymer Engineering and Science, Vol. 30, 1990, pp. 843-859.
25.T. Matsuoka, J. Takabatake, Y. Inoue and H. Takahashi, “Prediction of fiber orientation in injection molding parts of short-fiber-reinforced thermoplastics,” polymer engineering and science, Vol. 30, 1990, pp. 957-966.
26.M. R. Kamal, E. Chu, P. G. Lafleur. and M. E. Ryan, “Computer simulation of in injection mold filling for viscoelastic melt with fountain flow,” Polymer Engineering and Science, Vol. 26, 1986, pp. 190-196.
27.P. G. Lafleur and M. R. Kamal, “A structure-oriented computer simulation of the injection molding of viscoelastic crystalline polymers part1:Model with Fountain Flow, Packing, Solidification,” Polymer Engineering and Science, Vol. 26, 1986, pp. 92-102.
28.R. S. Bay and C. L. TuckerⅢ “Fiber orientation in simple injection moldings. partⅠ:Theory and numerical methods,” Polymer Composites, Vol. 13, 1992, pp. 317-331.
29.J. A. Bannantine, J. J. Comer and J. L. Handrock, “Fundamentals of metal fatigue analysis,” New Jersey, USA, 1990.
30.H. O. Fuchs and R. I. Stephens, “Metal fatigue in engineering,” Stanford, Iowa, 1980.
31.J. K. Kocsis and K. Friedrich, “Fracture behavior of injection-molded short and long glass fiber-polyamide 6.6 Composites,” Composites Science and Technology, Vol.32, 1988, pp. 293-325.
32.D. C. Martin, G. E. Novak and M. G. Wyzgoshi, “Fatigue fracture of Reaction Injection Molded (RIM) Nylon composites,” Journal of Applied Polymer Science, Vol. 37, 1989, pp. 3029-3056.
33.R. D. Kriz, Associate Professor Department of Engineering Science and Mechanics Director- Fracture Toughness, 上網日期:民國93年03月12日,網址:http://www.sv.vt.edu/classes/MSE2094_NoteBook.
34.G. R. Irwin, “Fracture dynamics in fracturing of metals,” American Society of Metals, Cleveland, 1948.
35.The Engineering Web, DuPont Zytel 101l,70G13L,70G33L , 上網日期:民國92年12月1日,網址:http://www.ibuyplastic.com/.
36.台中精機公司,塑膠機系列- VS系列機械規格, 上網日期:民國92年12月1 日,網址:http://www.or.com.tw/.
37.The Engineering Web, DuPont Zytel injection molding, 上網日期:民國92年12月1日,網址:http://www.ibuyplastic.com/.
38.張榮語,射出成型模具設計-操作實務,高立圖書,民國84。
39.“Standard test method for tensile properties of plastics,” Annual Book of ASTM Standards, D638-00, pp. 44-56.
40.R. L. Sierakowski, “Strain rate behavior of composites: issues,” The American Society of Mechanical Engineers, Vol. 48, 1995, pp. 1-6.
41.“Standard test methods for plane-strain fracture toughness and strain energy release rate of plastic materials,” Annual Book of ASTM Standards, D5045-99, pp. 347-355.
42.S. Kalpakjian, “Manufacturing engineering and technology,” Addison-Wesley Professional Computing, 1995.
43.D. V. Rosato and D. V. Rosato, “Injection molding handbook,” Van Nostrand Reinhold, 1986.
44.賀克勤,短纖維強化聚碳酸酯複合材料機械與磨耗特性之研究,國立中央大學機械工程研究所,博士論文,民國86年。
45.A. C. R. Moloney, “Fractography and failure mechanisms of polymers and composites,” Elsevier Science Publishers Ltd, 1989, pp. 387-436.
指導教授 黃俊仁(Jiun-Ren Hwang) 審核日期 2004-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明