博碩士論文 91323052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:18.232.188.89
姓名 蔡昆憲(Kuen-Shian Tsai)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 氣體擴散層與微孔層對於燃料電池之影響與分析
(The Effect of Gas Diffusion Layer and Mircoporous Layer in PEMFC)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析★ 加熱對肌肉組織之近紅外光光學特性影響之研究
★ 超音速高溫衝擊流之暫態分析★ 質子交換膜燃料電池陰極端之兩相流模擬與研究
★ 矽相關半導體材料光學模式之實驗量測儀器發展★ 燃料電池複合材料雙極板研發 及性能之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 為了讓質子交換膜燃料電池(proton exchange membrane fuel cell, 簡稱PEMFC)達到最好的性能,適當的水管理是一個很重要的課題。一方面得即時將化學反應產生的水移除,否則產生的水會阻塞催化層與氣體擴散層,進而阻塞氧氣與氫氣的傳輸,產生高的質傳阻抗,另外一方面,離子傳導膜也需要水來進行水合作用來增加離子傳導。所以水管理與質傳效應是重大影響PEMFC性能之兩大因素。
對於PEMFC之氣體擴散層(gas diffusion layer, 簡稱GDL),其組成包含了由碳黑與PTFE混合而成之微孔層(micro-porous layer, 簡稱MPL)以及較大孔隙之碳紙。氣體擴散層不僅用來支撐催化層,它也提供電極與流道板之間電的接觸傳遞。
即使GDL在提升PEMFC性能中扮演著一個很重要的角色,可是對於GDL跟電池內部之間的相互影響關係,卻是無法有一個相當程度的了解。在本論文係探討GDL與MPL之孔隙大小、孔隙分布、親疏水性、氣體滲透率、AC阻抗及其對於電池性能之影響。
在本研究中,MPL所使用之碳黑為乙炔碳黑(Acetylene-black),其中實驗包含了改變PTFE loading、使用不同的碳紙厚度以及MPL厚度。所使用的碳紙為未疏水之TGPH-060、TGPH-090以及TGPH-120的商用碳紙。根據實驗結果,我們發現使用未疏水之TGPH-090,並塗佈70μm之MPL,可以得到好的水管理與電池性能,特別一點的就是在中間區域之電流密度下,使用70μm厚度之MPL有較低的電子傳遞阻抗,而且在高電流密度下,也可以減少質傳阻抗。
摘要(英) Water management is an important issue in order to achieve high performance of proton-exchange membrane (PEM) fuel cell. On the one hand the product water from the chemical reaction needs to be removed in time, or it may block the pores in the catalyst layers as well as the gas diffusion layer (GDL) and then hinders the transport of oxygen and hydrogen, resulting in higher mass transport resistance. On the other hand, water is needed to hydrate the ionically-conducting membrane. So water management and mass transport have been shown to be important factors these strongly influence PEMFC Performance.
The GDL in a PEMFC consists of a micro-porous layer (MPL) of carbon black mixed with polytetrafluoroethylene (PTFE) that is coated onto a sheet of macro-porous carbon backing paper. This GDL not only provides physical micro-porous support for catalyst layer but also provides electrical contact between the electrode and the flow field plate. At the same time, it must allow the water formed on the cathode to exit to the gas channels and permit the passage of water between the gas streams and the membrane surface. Although the GDL is a seemingly minor component in a fuel cell, it has been shown that altering the composition of the diffusion layer can lead to substantial improvements in the performance of the cell.
Though the GDL in a PEMFC plays a critical role in the rise of performance, the GDL remains poorly understood because of a lack interactive effects with the other two main repeating units, the catalyst-coated membrane and the bipolar plate. It is the purpose of the present proposal to conduct a detailed study to investigate the effects of the characteristics of the GDL and MPL, including pore size, pore distribution, hydrophobic and hydrophilic treatment, gas permeability, and AC resistance and capillary force, on the water management and performance of a PEM fuel cell.
In the experiments, we used acetylene-black in MPL. The investigations include the effects of PTFE loading, carbon paper thicknesses and MPL thicknesses. The GDL used are commercial carbon papers: TGPH-060-no proofed, TGPH-090-no proofed, and TGPH-120- no proofed. According to our results, The TGPH-090-no proofed coated with 70μm MPL provides the best water management and performance in the PEMFC. Especially in the middle current density region, we find that when the thickness of MPL is 70μm, the cell has the lowest charge resistance. It also reduces the resistance of mass transport in the high current density region.
關鍵字(中) ★ 孔隙大小
★ 孔隙分布
★ 疏水性
★ 氣體滲透率
★ 氣體擴散層
★ 微孔層
關鍵字(英) ★ gas permeability
★ pore distribution
★ pore size
★ hydrophobic
★ gas diffusion layer (GDL)
★ micro-porous layer (MPL)
論文目次 中文摘要……………………………………………………..........……..I
英文摘要…………………………………………………….………….III
致謝……………………………………………………………………...V
目錄…………………………………………………………….……...VII
圖表目錄………………………………………………………….........IX
符號表……………………………………………………………...….XII
第一章 緒論……………………………………………………..……… 1
1-1 前言…………………………………………………….………..1
1-2質子交換膜燃料電池結構分析………………………..……….. 2
1-3發電與工作原理……………………………………….………... 8
1-4燃料電池的極化現象………………………………….………...9
1-5文獻回顧…………………………………………….…..……… 11
1.6研究目的…………………………………………….…..……… 22
第二章 實驗方法與實驗設備………………………………..…...…... 24
2.1製備MPL之方法與實驗規劃……...…………………..………24
2.2掃描式電子顯微鏡(SEM)….……………………….….……… 27
2.3 CCD影像量測系統…………………………………..………… 28
2.4 AC(Alternating Current)阻抗分析儀…………………..………28
2.5毛細流孔徑測定儀(Capillary Flow Porometry).………..….….29
2.6接觸角量測(contact angle) ……………………………..………31
2.7燃料電池測試系統.......................................................................32
第三章 結果與討論………………………………………….………... 36
3.1基底疏水………………………………………………...……… 36
3.2擴散層塗佈MPL…………………………………………..…… 39
3.3使用不同碳紙厚度……………………………….………..…… 42
3.4使用不同之MPL厚度……………………………...……..…… 44
3.5不同PTFE含量之MPL………………………………..……… 46
第四章 結論與建議……………………………………………..…….. 50
4.1結論…………………………………………………..……….....50
4.2未來研究方向與建議………………………………..………….51
參考文獻……………………………………………………..…………53
附錄一 燃料電池測試系統操作注意事項與操作流程………..…..…99
附錄二 微電腦程序/溫度控制器………………………………..…...106
參考文獻 1. V. Mehta, J.S. Cooper., “Review and analysis of PEM fuel cell design and manufacturing,” Vol. 114, pp. 32-53, (2003).
2. S. Litster, G. McLean., “PEM fuel cell electrodes,” Journal of Power Sources, Vol. 130, pp. 61-76, (2004).
3. A. A., Gorer., CA(US) “Platinum-ruthenium-palladium alloys for use as a fuel cell catalyst,” United States Patent, US 6,498,121 B1, (2002).
4. Z. B., Wei, Wang, Sui, Yi, B. L., “Influence of electrode structure on the performance of a direct methanol fuel cell,” Journal of Power Source, Vol. 106, pp. 364-369, (2002).
5. 萬其超,電化學,商務印書局, 台北, 1992.
6. D. Bevers, R. Rogers, M.V. Bradke., “Examination of the influence of PTFE coating on the properties of carbon paper in polymer electrolyte fuel cells,” Journal of Power Sources, Vol. 63, pp. 193-201, (1996).
7. J.W. Van Zee, W.K. Lee, C.H. Ho, M. Murthy., “The effects of compression and gas diffusion layers on the performace a PEM fuel cell,” Journal of Power Sources, Vol. 84, pp. 45-51, (1999).
8. F. Lufrano, E. Passalacqua, G. Squadrito, A. Patti, L. Giorgi., “Improvement in the diffusion characteristics of low Pt-loaded electrodes for PEFCs,” Journal of Applied Electrochemistry, Vol. 29, pp. 445-448, (1999).
9. L.R. Jordan, A.K. Shukla, T. Behrsing, N.R. Avery, B.C. Muddle, M. Forsyth., “Diffusion layer parameters influencing optimal fuel cell performance,” Journal of Power Source, Vol. 86, pp. 250-254, (2000).
10. E. Passalacqua, G. Squadrito, F. Lufrano, A. Patti, L. Giorgir., “Effects of the diffusion layer characteristics on the performance of polymer electrolyte fuel cell electrodes,” Journal of Applied Electrochemistry, Vol. 31, pp. 449-454, (2001).
11. J.M. Song, S.Y. Cha, W.M. Lee., “Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method,” Journal of Power Sources, Vol. 94, pp. 78-84, (2001).
12. Zhigang Qi, A. Kaufman., “Improvement of water management by a microporous sublayer for PEM fuel cells,” Journal of Power Sources, Vol. 109, pp. 38-46, (2002).
13. C.S. Kong, D.Y. Kim, H.K. Lee, Y.G. Shul, T.H. Lee, “Influence of pore-size distribution of diffusion layer on mass-transport problems of proton exchange membrane fuel cells,” Journal of Power Sources, pp. 185-191, (2002).
14. E. Antolini, R.R. Passos, E.A. Ticianelli., “Effects of the cathode gas diffusion layer characteristics on the performance of polymer electrolyte fuel cells,” Journal of Electrochemistry, pp. 383-388, (2002).
15. E. Antolini, R.R. Passos, E.A. Ticianelli., “Effects of the carbon powder characteristics in the cathode gas diffusion layer on the performance of polymer electrolyte fuel cells,” Journal of Power Source, Vol. 109, pp. 477-482, (2002).
16. M. Prasanna, H.Y. Ha, E.A. Cho, S.-A. Hong, I.-H. Oh., “Influence of cathode gas diffusion media on the performance of the PEMFCs,” Journal of Power Sources, Vol. 131, pp. 147-154, (2004).
17. G.G. Park, Y.J. Sohn, T.H. Yang, Y.G. Yoon, W.Y. Lee, C.S. Kim., “Effect of PTFE contents in the gas diffusion media on the performance of PEMFC,” Journal of Power Sources, Vol. 131, pp. 182-187, (2004).
18. J. Mirzazadeh, E. Saievar-Iranizad, L. Nahavandi., “An analytical approach on effect of diffusion layer on ORR for PEMFCs,” Journal of Electrochem. Soc., Vol. 137, No. 4, pp. 1131-1138, (1990).
19. H.K. Lee, J.H. Park, D.Y. Kim, T.H. Lee., “A study on the characteristics of the diffusion layer thickness and porosity of the PEMFC,” Journal of Power Sources, Vol. 131, pp. 200-206, (2004).
20. X.G. Yang, F.Y. Zhang, A.L. Lubawy, C.Y. Wang., “Visualization of Liquid water Transport in a PEFC,” Journal of Power Sources, Vol. 11, pp. A408-A411, (2004).
21. 黃崑福,“小型燃料電池流道設計與性能分析,”國立中央大學機械研究所碩士論文, 桃園, (2004).
22. L. Giorgi, E. Antolini, A. Pozio, E. Passalacuqa., “Influence of the PTFE content in the diffusion layer of low-Pt loading electrodes for polymer electrolyte fuel cells,” Electrochim, Vol. 43, pp. 3675-3680, (1998).
23. A. Jena, K. Gupta., “An innovative technique for pore structure analysis of fuel cell and battery components using flow porometry,” Journal of Power Sources Vol. 96, pp. 214-219, (2001).
24. U. Pasaogullari, C.Y. Wang., “Liuqid water transport in gas diffusion layer of polymer electrolyte fuel cells,” Journal of The Electrochemical Society. Vol. 151, No. 3, pp A399-A406, (2004).
25. S.M. Senn, D. Poulikakos., “Polymer electrolyte fuel cells with porous materials as fluid distributors and comparisons with traditional channeled Systems,” Laboratory of Thermodynamics in Emerging, Vol. 126, pp. 410-418, (2004).
26. 邱燿輝,“質子交換膜燃料電池性能質傳及電流傳導問題之研究,”大葉大學機械工程研究所碩士論文, 彰化, (2003).
27. M. Eikerling, A.A. Kornyshev., “Modelling the performance of the cathode catalyst layer of polymer electrolyte fuel cells,” Journal Electroanal Chem, Vol. 453, pp. 89-106, (1998).
28. M. Sudoh, T. Kondoh, N. Kamiya, T. Ueda, K. Okajima., “Impdance analysis of gas-diffusion electrode coated with a thin layer of fluoro ionomer to enhance its stability in oxygen reduction,” Journal of The Electrochemical Society, Vol. 147, No. 10, pp. 3739-3744, (2000).
29. J. Ijonen, M. Mikkola, G. Lindbergh., “Flooding of gas diffusion backing in PEFCs physical and electrochemical characterization,” Journal of The Electrochemical Society, Vol. 151, No. 8, pp. A1152-A1161, (2004).
30. K.T. Jeng, S.F. Lee, G.F. Tsai, C.H. Wang., “Oxygen mass transfer in PEM fuel cell gas diffusion layers,” Journal of Power Sources, Vol. 138, pp. 41-50, (2004).
31. U. Pasaogullair, CY. Wang., “Two-phase transport and the role of micro-porous layer in polymer electrolyte fuel cell,” Electrochemic Acta, Vol. 49, pp. 4359-4369, (2004).
32. 羅世坤, “流場設計對質子交換膜燃料電池性能之研究”, 國立中央大學機械研究所碩士論文, 桃園, (2003)
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2005-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明