博碩士論文 91323074 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.236.126.69
姓名 曾家麟(Chia-Lin Tzeng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
(Hydromagnetic Double-diffusiveConvection In A Porous Medium With Opposing Temperature And Concentration Gradients)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 氣體擴散層與微孔層對於燃料電池之影響與分析
★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析★ 加熱對肌肉組織之近紅外光光學特性影響之研究
★ 超音速高溫衝擊流之暫態分析★ 質子交換膜燃料電池陰極端之兩相流模擬與研究
★ 矽相關半導體材料光學模式之實驗量測儀器發展★ 燃料電池複合材料雙極板研發 及性能之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文利用數值模擬研究多孔性矩形封閉空間中,雙重溫度與濃度梯度下磁流體之雙擴散對流現象。多孔性介質內部考慮黏滯效應、慣性力與浮力效應之影響。定義上、下壁面為絕熱,左、右壁面為固定溫度與固定濃度,並在橫向上施加一均勻不隨時間變化之磁場作用於流場。這個受磁場影響的流場,我們指定研究浮力比(buoyancy ratio)範圍N=0~2.0,普朗特數(Prandtl number
Pr=1.0~5.0,路易士數(Lewis number)Le=0.1~2.0,瑞里數(Rayleigh number),以及設定此封閉區域的長寬比例為2:1、達西數(Darcy number)Da=10-5~10-1與孔隙率(porosity)ε=0.2~0.8。受磁場影響之流場熱質傳變化會因磁場大小不同而增大或降低。本文研究之結果,熱質傳的變化受到不同普朗特數、路易士數、浮力比、內部熱源、滲透率(permeability)、孔隙率,瑞里數與哈曼數(Hartmann number)之大小不同,高溫壁面平均之紐塞爾數(Nusselt number)與希吾爾德數(Sherwood number)的變化亦不同。
在暫態研究方面,流體依其熱慣性(thermal inertia)的不同,配合高瑞里數之條件下,流場流動會呈現不同程度之震盪變化,在磁場強度增強下會抑制這種現象,使流動震盪減緩並較快達到穩態。
本研究在瑞里數RaT=105下,將高溫壁面之平均紐塞爾數與平均希吾爾德數對磁場及孔隙率之關係統計成一半經驗式(correlation),期望提供工業界從事類似研究之先進一參考性的指標。
摘要(英) The problem of hydromagnetic double-diffusive convective flow of a binary mixture in a porous rectangular enclosure is solved numerically in this work. The effects of viscosity and inertial force of the porous medium are considered. The upper and lower walls are insulated. Constant temperatures and concentrations are imposed along the left and right walls of the porous enclosure and a uniform magnetic field is applied in the x-direction. The buoyancy ratio is in the range of 0.0~2.0, Prandtl number in 1.0~5.0, Lewis number in 0.1~2.0, Rayleigh number in 105~107, Darcy number in 10-5~10-1, porosity in 0.2~0.8 and the enclosure aspect ratio is fixed at 2.0.
Results for various conditions were presented and discussed. It is found that the flow structure and heat transfer characteristics inside the enclosure depend strongly on the porosity, permeability, the magnetic field, the effect of buoyancy and the thermal inertia. The effect of the magnetic field is found to reduce the movement of the convection within the enclosure.
For the unsteady case, the flow oscillates periodically at high Rayleigh number and high heat capacity ratio. The application of magnetic field reduces the oscillation.
Finally, this work provides correlations of the Nusselt number vs. porosity and the Hartmann number.
關鍵字(中) ★ 磁流體
★ 多孔性介質
★ 雙擴散對流
關鍵字(英) ★ double-diffusive convection
★ hydormagnetic
★ porous medium
論文目次 中文摘要………………………………………………………………Ⅰ
英文摘要………………………………………………………………Ⅲ
誌謝……………………………………………………………………Ⅳ
目錄……………………………………………………………………Ⅴ
表目錄…………………………………………………………………Ⅷ
圖目錄…………………………………………………………………Ⅸ
符號說明………………………………………………………………XV
一、 緒論……………………………………………………1
1.1 研究背景與動機……………………………………………1
1.2 磁流體構造與簡介…………………………………………4
1.3 文獻回顧……………………………………………………6
1.4 研究主題……………………………………………………10
二、 磁流場理論與分析…………………………………12
2.1 幾何模型……………………………………………………12
2.2 統御方程式…………………………………………………13
2.3 初始條件與邊界條件………………………………………17
2.4 磁場與勞倫茲力……………………………………………19
2.5 Heat capacity ratio分析………………………………21
三、 數值方法與驗證……………………………………23
3.1 數值方法……………………………………………………23
3.1.1 能量方程式…………………………………………23
3.1.2 連續與動量方程式…………………………………26
3.1.3 壓力修正方程式……………………………………30
3.2 格點與 驗證………………………………………………32
3.2.1 格點驗證……………………………………………32
3.2.2 驗證………………………………………………33
3.3 程式驗證………………………………………………36
3.3.1 穩態解之驗證………………………………………36
3.3.2 暫態解之驗證………………………………………37
四、 結果與討論……………………………………41
4.1 內部熱源之影響………………………………………41
4.2 磁場與滲透率之影響…………………………………43
4.3 孔隙率之影響…………………………………………44
4.4 不同浮力比之影響……………………………………44
4.5 不同普朗特數與路易士數之影響……………………45
4.6 暫態過程磁場效應之影響……………………………50
4.7 暫態過程浮力效應之影響……………………………51
4.8 暫態過程熱慣性之影響………………………………51
4.9 週期性震盪之現象……………………………………54
4.10 多孔介質中受磁場影響之經驗式…………………54
五、 結論與建議……………………………………87
5.1 結論…………………………………………………87
5.2 未來研究方向與建議………………………………88
參考文獻…………………………………………………90
參考文獻 1. John F. Hawley, James M. Stone, “MOCCT: A numerical technique for
astrophysical MHD,” Computer Physics Communications, vol. 89, pp. 127-148
(1995).
2. P. Dold and K. W. Benz, “Rotating magnetic fields: fluid flow and crystal
growth applications,” Progress in Crystal and Characterization of
Materials, pp. 7-38 (1999).
3. E. Blums, Yu. A. Mikhailov and R. Ozols, “Heat and Mass Transfer in MHD
Flows,” series in theoretical and applied mechanics (1987).
4. E. Priest and T. Forbes, “Magnetic Reconnection MHD Theory and
Applications,” published by the press syndicate of the university of
Cambridge (1999).
5. H. Harada, E. Takeuchi, M. Zeze and H. Tanaka, “MHD analysis in
hydromagnetic casting process of clad steel slabs,” Applied Mathematical
Modelling, vol. 22, pp. 873-882 (1998).
6. Ali J. Chamkha, “Hydromagnetic flow and heat transfer of a heat-generating
fluid over a surface embedded in a porous medium,” Int. Comm. Heat Mass
Transfer, vol. 24, no. 6, pp. 815-825 (1997).
7. P. Nithiarasu, K. N. Seetharamu, T. Sundararajan, “Numerical investigation
of buoyancy driven flow in a fluid saturated non-Darcian porous medium,”
International Journal of Heat and Mass Transfer, vol. 42, pp. 1205-1215
(1999).
8. C. Beckermann, S. Ramadhyani, R. Viskanta, “Natural convection flow and
heat transfer between a fluid layer and a porous layer inside a rectangular
enclosure,” Journal of Heat Transfer, vol. 109, pp. 363-364 (1987).
9. I.A. Hassanien and M.H. Obied Allah, “Oscillatory hydromagnetic flow
through a porous medium with variable permeability in the presence of free
convection and mass transfer flow,” Int. Comm. Heat Mass Transfer, vol. 29,
no. 4, pp. 567-575 (2002).
10.P. Nithiarasu, T. Sundararajan, K. N. Seetharamu, “Double-diffusive natural
convection in a fluid saturated porous cavity with a freely convecting
wall,” Int. Comm. Heat Mass Transfer, vol. 24, no. 8, pp. 1211-1130 (1997).
11.M. Anwar Hossain, Mike Wilson, “Natural convection flow in a fluid-
saturated porous medium enclosed by non-isothermal walls with heat
generation,” Int. J. Therm. Sci., vol. 41, pp. 447-454 (2002).
12.Ali J. Chamkha, Hameed Al-Naser, “Hydromagnetic double-diffusive convection
in a rectangular enclosure with opposing temperature and concentration
gradients,” International Journal of Heat Transfer, vol. 45, pp. 2465-2483
(2002).
13.D.A.S Rees and J.L. Lage, “The effect of thermal stratification on natural
convection in a vertical porous insulation layer,” Int. J. Heat Mass
Transfer, vol. 41, no. 1, pp. 111-121 (1997).
14.Ali J. Chamkha, Hameed Al-Naser, “Hydromagnetic double-diffusive convection
in a rectangular enclosure with uniform side heat and mass fluxes and
opposing temperature and concentration gradients,” International Journal of
Thermal Sciences, vol. 41, pp. 936-948 (2002).
15.C.C. Wu and Tom Chang, “Further study of the dynamics of two-dimensional
MHD coherent structures: a large-scale simulation,” Journal of Atmospheric
and Solar-Terrestrial Physics, vol. 63, pp. 1447-1453 (2001).
16.P. Bera, A. Khalili, “Double-diffusive natural convection in an anisotropic
porous cavity with opposing buoyancy forces: multi-solutions and
oscillations,” International Journal of Heat and Mass Transfer, vol. 45,
pp. 3205-3222 (2002).
17.P. Nithiarasu, K. N. Seetharamu and T. Sundararajan, “Natural convective
heat transfer in a fluid saturated variable porosity medium,” Int. J. Heat
Transfer, vol. 40, no. 16, pp. 3955-3967 (1997).
18.Bejan. Adrian, “Convection Heat Transfer,” published simultaneously in
Canada (1995).
19.Kambiz. Vafai, Hamid A. Hadim, “Handbook of Porous Media,” library of
cataloging in publication data (2000).
20.H.M. Park, W.S. Jung, “Numerical solution of optimal magnetic suppression
of natural convection in magneto-hydrodynamic flows by empirical reduction
of modes,” Computers & Fluids, vol. 31, pp. 309-334 (2002).
21.K. Ghorayeb, H. Khallouf, A. Mojtabi, “Onset of oscillatory flows in double-
diffusive convection,” International Journal of Heat and Mass Transfer,
vol. 42, pp. 629-643 (1999).
22.A.A. Mohamad, Rachid Bennacer, “Natural convection in a confined saturated
porous medium with horizontal temperature and vertical solutal gradients,”
Int. J. Therm. Sci., vol. 41, pp. 82-93 (2001).
23.Wen-Jeng Chang and Dong-Fang Yang, “Natural convection for the melting of
ice in porous media in a rectangular enclosure,” Int. J. Heat Transfer,
vol. 39, no. 11, pp. 2333-2348 (1996).
24.N. Rudraiah, R. M. Barron, M. Venkatachalappa and C. K. Subbaraya, “Effect
of a magnetic field on free convection in a rectangular enclosure,” Int. J.
Engng Sci., vol. 33, no. 8, pp. 1075-1084 (1995).
25.S. Bhattacharyya, A. Pal and I. Pop, “Unsteady mixed convection on a wedge
in a porous medium,” Int. Comm. Heat Mass Transfer, vol. 25, no. 5, pp. 743-
752 (1998).
26.Orhan Aydm, “Transient natural convection in rectangular enclosures heated
from one side and cooled from above,” Int. Comm. Heat Mass Transfer, vol.
26, no. 1, pp. 135-144 (1999).
27.C. Y. Soong, P. Y. Tzeng, D. C. Chiang and T. S. Sheu, “Numerical study on
mode-transition of natural convection in differential heated inclined
enclosures,” Int. J. Heat Mass Transfer, vol. 39, no. 14, pp. 2869-2882
(1996).
28.Ali J. Chamkha, “Unsteady hydromagnetic flow and heat transfer from a non-
isothermal stretching sheet immersed in a porous medium,” Int. J. Heat Mass
Transfer, vol. 25, no. 6, pp. 899-906 (1998).
29.A. G. Churbanov, P. N. Vabishchevich, V. V. Chudanov and V. F. Strizhov, “A
numerical study on natural convection of a heat-generating fluid in
rectangular enclosures,” Int. J. Heat Mass Transfer, vol. 37, no. 18, pp.
2969-2984 (1994).
30.J. Steelant and E. Dick, “Modelling of bypass transition with conditioned
Navier-Stokes equations coupled to an intermittency transport equation,”
International Journal for Numerical Methods in Fluids, vol. 23, pp. 193-220
(1996).
31.R. A. W. M. Henkes and P. Le. Quere, “Three-dimensional transition of
natural-convection flows,” J. Fluid Mech., vol. 319, pp, 281-303 (1996).
32.N. C. Markatos and K. A. Pericleous, “Laminar and turbulent natural
convection in an enclosed cavity,” Int. J. Heat Mass Transfer, vol. 27, no.
5, pp. 755-772 (1984).
33.Pedro G. Vicente, Alberto Garcia, Antonio Viedma, “Experimental study of
mixed convection and pressure drop in helically dimpled tubes for laminar
and transition flow,” International Journal of Heat and Mass Transfer, vol.
45, pp. 5091-5105 (2002).
34.M. T. Schobeiri, P. Chakka, “Prediction of turbine blade heat transfer and
aerodynamics using a new unsteady boundary layer transition model,”
International Journal of Heat and Mass Transfer, vol. 45, pp. 815-829 (2002).
35.Andrej Horvat, Ivo Kljenak and Jure Marn, “Two-dimensional large-eddy
simulation of turbulent natural convection due to internal heat
generation,” International Journal of Heat and Mass Transfer, vol. 40, pp.
3985-3995 (2001).
36.Khalil M. Khanafer and Ali J. Chamkha, “Hydromagnetic natural convection
from an inclined porous square enclosure with heat generation,” Numerical
Heat Transfer, Part A, vol. 33, pp. 891-910 (1998).
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2004-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明