博碩士論文 91323078 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:18.217.208.72
姓名 黃經孝(Ching-Hsiao Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 微管道電滲流物理特性之數值模擬
(Numerical Simulation for the Physical Characteristics of Electroosmotic Flow in Microchannel)
相關論文
★ 以數值模擬探討微管流之物理效應★ 微管流之層流與紊流模擬
★ 銅質均熱片研製★ 熱差式氣體流量計之感測模式及氣流道效應分析
★ 低溫倉儲噴流系統之實驗量測與數值模擬研究★ 壓縮微管流的熱流分析
★ 微小圓管的層流及熱傳數值模擬★ 微型平板流和圓管流的熱流特性:以數值探討壓縮和稀薄效應
★ 電滲泵內多孔介質微流場特性之數值模擬★ 被動式微混合器之數值模擬
★ 電滲泵的製作與性能測試★ 叉合型流場於質子交換膜燃料電池之陰極半電池的參數探討
★ 無動件式高流率電滲泵的製作與特性分析★ 微電滲泵之暫態熱流研究
★ 高解析熱氣泡式噴墨頭墨滴成形觀測★ 電滲泵之焦耳熱效應分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文針對平板與矩形管微流道中考慮電雙層效應熱流場進行數值模擬。模擬流場的參數與範圍:雷諾數26.6~422.2,平板流道高度5~190 m,矩形管水力直徑維持在24 m而高寬比分別為1/4、2/3與1,工作流體離子濃度10-7~10-4M, (zeta potential)為 25~200mV,施加壓力差-103~-105N/m2,外加電壓104~105V/m。本文除驗證與進一步分析Mala等人(1997)的平板熱流場外,另分析不同驅動型式(誘導電場流:壓力差;外加電場流:電壓差)的矩形截面電滲流場,探討正或負 值對平板和矩形管中電雙層靜電位勢、速度、電動力與黏滯力的影響。再將速度剖面與實驗值作比較。結果發現平板流與誘導電場流均有因傳導電流造成流速降低的現象。正或負 會影響電雙層靜電位勢與外加電場流,平板流與誘導電場流則不受影響。穩態時作用於流道截面的電動力與黏滯力變化取決於不同流場驅動型式。考慮電雙層效應的平板流場,摩擦係數略高於傳統理論值;紐索數略低於傳統理論值。於電滲流(外加電場流)模型中加入壓力項,可形成特定電滲流速度剖面,可用於微流體的混合及分離。
摘要(英) A numerical study is performed to analyze the effect of electric double layer (EDL) on the behavior of flow and heat transfer for microscale channel flows. Both the parallel flow and rectangular duct flow are simulated. The parallel channel height varied from 5 to 190 m and the aspect ratio of the rectangular duct, with a fixed hydraulic diameter (24 m), is between 1/4 and 1. The electroosmotic flow in the two parallel plates is analyzed first and compared with experiments. Next the electroosmotic flow in a rectangular duct is studied in detail, including the flow driven-mode either by the imposed pressure difference or by the applied voltage difference. In addition, effects of positive or negative zeta potential ( ) on the electrostatic potential distribution, velocity field, electrokinetic and viscous force variation are also investigated. Predicted velocity profile revealed that the conduction current will retard the flow velocity in the parallel plate flow and the flow-induced electrokinetic field flow. Either positive of negative do affect the electrostatic potential of EDL and applied external electric field flow, but it will not influence the parallel plate flow and the flow-induced electrokinetic field flow. In addition, variations of the electrokinetic force and the viscous force depend on different driven-mode of flowfield. The friction coefficient of the parallel plate flow is slightly higher than the classical theory, and Nusselt number is lower than the conventional value. With including the pressure term in the electroosmotic flow (the applied external electric flow), specific velocity profile of electroosmotic flow can be manipulated, which is helpful to the mixing and separation of the microfluidics.
關鍵字(中) ★ 外加電場流
★ 誘導電場流
★ 電雙層
★ 電滲流
關鍵字(英) ★ Electroosmotic flow
★ Flow-induced electrokinetic field flow
★ Electric double layer
★ Applied external electric field flow
論文目次 中 文 摘 要 i
英 文 摘 要 ii
目錄 iii
圖目錄 vi
符號說明 xii
第一章 電滲流的研究 1
1.1 電滲流在微流體裝置的應用 1
1.2 文獻回顧 3
1.2.1 違反傳統理論 3
1.2.2 電雙層的理論與數值模擬研究 5
1.2.3 電雙層的實驗研究 8
1.2.4 焦耳熱效應 10
1.3 電雙層與相關物理特性 12
1.3.1 電雙層模型演進 12
1.3.2 電雙層 13
1.3.3 電黏滯效應 13
1.3.4 Zeta potential 14
1.3.5 電動效應-電滲 15
1.4 研究方向 16
第二章 數值分析 18
2.1 FEMLAB簡介 18
2.2 Poisson-Boltzmann方程式 19
2.3 動量方程式 22
2.4 能量方程式(平板) 26
2.5 誘導電場流、外加電場流分析 27
第三章 結果與討論 30
3.1 平板流 31
3.1.1 電雙層靜電位勢 31
3.1.2 速度場與相關物理參數 33
3.1.3 溫度場與紐索數 37
3.1.4 流場作用力 38
3.2 矩形管流 39
3.2.1 電雙層靜電位勢 40
3.2.2 誘導電場流 41
3.2.3 外加電場流 44
3.2.4 外加電場流含壓力項 50
第四章 結論與建議 51
4.1 結論 51
4.2 建議 53
參考文獻 54
參考文獻 Ajdari, A., “Electro-osmosis on inhomogeneously charged surfaces,” Phys. Rev. Lett., vol. 75, pp. 755-758, 1995.
Ajdari, A., “Generation of transverse fluid currents and forces by an electric field: electro-osmosis on charge-modulated and undulate surfaces,” Phys. Rev., vol. E53, pp. 4996-5005, 1996.
Arulanadam, S., Li, D., “Liquid transport in rectangular microchannels by electroosmotic pumping,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 161, pp. 89-102, 2000.
Bingham, E. C., Rheological Memoirs, vol. 1, Lancaster, PA, 1940.
Burgreen, D. and Nakache, F. R., “Electrokinetic flow in ultrafine capillary slits,” J. Phys. Chem., vol. 68, pp. 1084, 1964.
Chen, C.-H. and Santiago, J. G., “A planar electroosmotic micropump,” J. Microelectromech. System, vol. 11, no. 6, 2002.
Chen, C.-H., Zeng, S., Mikkelsen, J. C. and Sntiago, J. G., “Development of a planar electrokinetic micropump,” Proc. of the ASME International Mechanical Engineering Congress and Exposition, Orlando, USA, 2000.
Choi, S. B., Barron, R. F. and Warrington, R. O., “Fluid Flow and heat transfer in microtubes,” ASME Proc., vol. 32, pp. 123-134, 1991.
Chun, M.-S., “Electrokinetic flow velocity in charged slit-like microfluidic channels with linearized Poisson-Boltzmann field,” Korean J. Chem. Eng., vol. 19, pp. 1-6, 2002.
Chun, M.-S. and Kwak, H. W., “Electrokinetic flow and electroviscous effect in a charged slit-like microfluidic channel with nonlinear Poisson-Boltzmann field,” Korea-Australia Rheology J., vol. 15, No. 2, pp. 83-90, 2003.
Debye, P. and Huckel, E., “Zur Theorie der Elektrolyte I,” Physik. Z., vol. 24, pp. 185-206, 1923a.
Debye, P. and Huckel, E., “Zur Theorie der Elektrolyte II,” Physik. Z., vol. 24, pp. 305-324, 1923b.
Erickson, D. and Li, D., “Influence of surface heterogeneity on electrokinetically driven microfluidic mixing,” Langmuir, vol. 18, pp. 1883-1892, 2002.
Eringen, A., “Simple microfluids,” Int. J. Eng. Sci., vol. 2, pp. 205-217, 1964.
Gouy, G., “Sur la constitution de la charge ’electrique ’a la surface d’un electrolyte,” J. Phys. Chem., vol. 9, pp. 457, 1910.
Harley, J. and Bau, H., “Fluid flow in micron and submicron size channel,” IEEE Trans., THO249-3, pp. 25-28, 1989.
Helmholtz, H., “”Uber den Einfluβ der elektrischen Grenzschichten bei galvanischer Spannung und der durch Wasserstromung erzeugten Potentialdiffernz,” Ann., vol. 7, pp. 337, 1879.
Hunter, R. J., Zeta Potential in Colloid Science: Principle and Applications. Academic Press, New York, 1981.
Israelichvili, J. N., “Measurement of the Viscosity of Liquids in Very Thin Films,” J. Colloid Interface Sci., vol. 100, pp. 263-271, 1986.
Jacobi, A. M., “Flow and heat transfer in microchannels using a microcontinuum approach,” J. Heat Transfer, vol. 111, pp. 1083-1085, 1989.
Karniadakis, G. E. and Beskok, A., Micro Flows: Fundamentals and Simulation, Springer Verlag, 2002.
Levine, S., Marriott, J. R., Neale, G. and Epstein, N., “Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potential,” J. Colloid Interface Science, vol. 52, pp. 136, 1975.
Li, D., “Electro-viscous effects on pressure-driven liquid flow in microchannels,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 195, pp. 35-57, 2001.
Long, D. and Ajdari, A., “Symmetry properties of the electrophoretic motion of pattern colloidal particles,” Phys. Rev. Lett., vol. 81, pp. 1529-1532, 1998.
Mala, G. M., Li, D. and Dale, J. D., “Heat transfer and fluid flow in microchannels,” Int. J. Heat and Mass Transfer, vol. 40, no. 13, pp. 3079-3088, 1997.
Mala, G. M. and Li, D., Werner, C. and Jacobasch, H.-J., Ning Y. B., “Flow characteristics of water through a microchannel between two parallel plates with electrokinetic effects,” Int. J. Heat and Fluid Flow, vol. 18, pp. 489-496, 1997.
Mala, G. M. and Li, D., “Flow characteristics of water in microtubes,” Int. J. Heat and Fluid Flow, vol. 20, pp. 142-148, 1999.
Maynes, D., Webb, B. W., “Fully developed electro-osmotic heat transfer in microchannels,” International Journal of Heat and Mass Transfer, vol. 46, pp. 1359-1369, 2003a.
Maynes, D., Webb, B. W., “Fully-developed thermal transport in combined pressure and electro-osmotically driven flow in microchannels,” vol. 25, pp. 889-895, 2003b.
Moorthy, J., Khoury, C., Moore, J. S. and Beebe, D. J., “Active control of electroosmotic flow in microchannels using light,” Sensors and Actuators B, vol. 75, pp. 223-229, 2001.
Patankar, N. A. and Hu, H. H., “Numerical simulation of electroosmotic flow,” Anal. Chem., vol. 70, pp. 1870-1881, 1998.
Paul, P. H., Arnold, D. W. and Rakestraw, D. J., “Electrokinetic generation of high pressures using porous microstructures,” micro-TAS 98, Banff, Canada, 1998.
Peng, X. F., Peterson, G. P. and Wang, B. X., “Friction flow characteristics of water flowing through rectangular microchannels,” Exp. Heat Transfer, vol. 7, pp. 249-264, 1994.
Peng, X. F., Peterson, G. P. and Wang, B. X., “Heat transfer characteristics of water flowing through microchannels,” Exp. Heat Transfer, vol. 7, pp. 265-283, 1994.
Peng, X. F., Wang, B. X., Peterson, G. P. and Ma, H. B., “Experimental invetigation of heat transfer in flat plates with rectangular microchannels,” Int. J. Heat and Mass Transfer, vol. 38, pp. 127-137, 1995.
Pfahler, J. N., “Liquid transport in micron and submicron channels,” Ph D. thesis, University of Pennsylvania, Philadelphia, PA, 1992.
Qian, S. and Bau, H. H., “A chaotic electroosmotic stirrer,” Anal. Chem., vol. 74, pp. 3616-3625, 2002.
Rahman, M. M., Gui, F., “Experimental measurements of fluid flow and heat transfer in microchannel cooling passages in a chip substrate,” Advances in Electronic Packaging, ASME EEP-vol. 4-2, pp. 685-692, 1993.
Ren, L., Qu, W. and Li, D., “Electro-viscous effects on liquid flow in microchannels,” J. Colloid Interface Science, vol. 233, pp. 12-22, 2001a.
Ren, L., Qu, W. and Li, D., “Interfacial electrokinetic effects on liquid flow in microchannels,” Int. J. Heat Mass Transfer, vol. 44, pp. 3125-3134, 2001b.
Reuss, F. F., “Sur un nouvel effet de l’electricite galvanique,” Memoires de la Societe Imperiale de Naturalistes de Moscou, vol. 2, pp. 327-337, 1809.
Rice, C. L. and Whitehead, R., “Electrokinetic flow in a narrow cylindrical capillary,” J. Phys. Chem., vol. 69, pp. 4017-4024, 1965.
Schasfoort, R. B. M., Schlautmann, S., Hendrikse, J. and Van den Berg, A., “Field-effect flow control for microfabrication fluidic network,” Science, vol. 286, pp. 942-945, 1999.
Sinton, D. and Li, D., “Electroosmotic velocity profiles in microchannels,” Colloids and Surfaces A: Physicochem. Eng. Aspects, vol. 222, pp. 273-283, 2003.
Stern, O., “Zur theory der electrolytischen doppelschicht,” Z. Electrochem, vol. 30, pp. 508-516, 1924.
Stroock, A. D., Weck, M., Chiu, D. T., Huck, W. T. S., Kenis, P. J. A., Ismagilov, R. F. and Whitesides, G. M., “Patterning electroosmotic flow with patterned surface charge,” Phys. Rev. Lett., vol. 94, pp. 3314-3317, 2000.
Tang, G. Y., Yang, C., Chai, C. J. and Gong, H. Q., “Modeling of electroosmotic flow and capillary electrophoresis with the Joule heating effect: The Nernst-Planck equation versus the Boltzmann distribution,” Langmuir, Accepted for Publication.
Tang, G. Y., Yang, C., Chai, C. J. and Gong, H. Q., “Joule heating effect on electroosmotic flow and mass species transport in a microcapillary,” International Journal of Heat and Mass Transfer, vol. 47, pp. 215-227, 2004a.
Tang, G. Y., Yang, C., Chai, C. K., Gong, H. Q., “Numerical analysis of the thermal effect on electroosmotic flow and electrokinetic mass transport in microchannels,” Analytica Chimica Acta, vol. 507, pp. 27-37, 2004b.
Tuckermann, D. B. and Pease, R. F. W., “High-performance heat sinks for VLSI,” IEEE Electron Device Lett., vol. 2, pp. 126-129, 1981.
Tuckermann, D. B. and Pease, R. F. W., “Optimized convective cooling using micromachined structures,” J. Electrochem. Soc., vol. 129, C98, 1982.
Urbanek, W., Zemel, J. N. and Bau, H. H., “An investigation of the temperature dependence of Poiseuille numbers in microchannel flow, J. Micromech. and Microeng., vol. 3, pp. 206-209, 1993.
Von Smoluchowski, M., “Versuch einer mathematischen theorie der kogulationskinetic kolloid losunaen,” Z. Phys. Chem., vol. 92, pp. 129-135, 1917.
Von Smoluchowski, M., “Handbuch der electrizitat und des Magnetismus,” (Graetz), Barth, Leipzig, vol. II, pp. 366, 1921.
Wang, B. X. and Peng, X. F., “Experimental investigation on liquid forced-convection heat transfer through microchannels,” Int. J. Heat and Mass Transfer, vol. 37 (suppl. 1), pp. 73-82, 1994.
Yang, C. and Li, D., “Electrokinetic effects on pressure-driven liquid flows in rectangular microchannels,” J. Colloid Interface Science, vol. 194, pp. 95-107, 1997.
Yang, C. and Li, D., “Analysis of electrokinetic effects on the liquid flow in rectangular microchannels,” Colloids and Surface A: Physicochemical and Engineering Aspects, vol. 143, pp. 339-353, 1998.
Yang, C., Li, D. and Masliyah, J. H., “Modeling forced liquid convection in rectangular microchannels with electrokinetic effects,” Int. J. Heat Mass Transfer, vol. 41, pp. 4229-4249, 1998.
Yang, R.-J., Fu, L.-M. and Lin, Y.-C., “Electroosmotic flow in microchannels,” J. Colloid Interface Science, vol. 239, pp. 98-105, 2001.
Yang, R.-J., Fu, L.-M. and Hwang, C.-C., “Electroosmotic entry flow in a microchannels,” J. Colloid Interface Science, vol. 244, pp. 173-179, 2001.
Zeng, S., Chen, C.-H., Mikkelsen, J. C. and Sntiago, J. G., “Fabrication and characterization of electroosmotic micropumps,” Sensors and Actuators B, vol. 79, pp. 107-114, 2001.
Zhao, T. S. and Liao, Q., “Thermal effects on electro-osmotic pumping of liquids in microchannels,” J. Micromech. Microeng., vol. 12, pp. 962-970, 2002.
張志彰與楊瑞珍,微管道電滲流流場之混合機制分析,第十屆全國計算流體力學學術研討會,花蓮,2003.
指導教授 吳俊諆(Jiunn-Chi Wu) 審核日期 2004-7-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明