博碩士論文 91323113 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.145.93.210
姓名 張智強(Chih-Chiang Chang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 適應性光學之系統鑑別
(System Identification of Adaptive optics)
相關論文
★ 大學太空酬載計畫實作管理方法研究★ 微電鍍控制系統之開發
★ 異波速媒體測距系統的開發★ 人體血清白蛋白構形改變之電化學及表面電漿共振分析研究
★ 超高解析度表面電漿共振生物感測器之研製★ 電極引導微電鍍系統之開發
★ 異波速媒體相位差測距系統之開發★ 橢圓幾何參數鑑別之理論模擬及實作
★ 多極式陽極引導微電鍍系統★ 雙頻超音波測距研究
★ 3D陽極引導微電鍍系統開發★ 變頻式超音波測距之可行性研究
★ 氧敏感光波光電倍增管敏感度校正平台開發 I★ 地面物體搜索用無線網路的開發
★ 自動地面車輛用之可堆疊串接電源系統★ 衛星姿態控制硬體在迴路測試用之磁場模擬艙
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 適應性光學(adaptive optics)是使用可調變的主動式光學元件(active optical device),配合上波前感測器(wavefront detector),經由控制器即時地去補償修正因外在擾動造成波前改變的系統,其在天文科學及國防上已被大量研究與應用,於通訊、生醫與工業雷射銲接加工等領域上也開始受到重視。
適應性光學系統主要包含三個部份:波前感測(wavefront sensing)、波前的修正(wavefront correction)與補償控制系統(reconstruction and control system)。本論文主要規畫之前饋式控制(feedforward control)適應性光學系統之實驗部份,包括光電元件製作、架設與完成系統的鑑別一一做討論。在波前感測方面,利用Mach-Zehnder干涉方式,配合液晶裝置(liquid crystal device,LCD)做移相干涉術(phase-shift interferometry, PSI)將相位偵測出來。利用PSI做相位的重建有較好的效果,並且也完成LCD驅動電路以及提出一相位找尋的方法與快速切換的方式。而波前偵測器部份我們使用光二極體陣列(photodiode array)與電荷耦合元件(charge couple device,CCD)分別做測試比較空間的解析度與取樣速度。在波前修正部份利用可調變聚焦鏡(deformable mirror,DM)配合自製的多通道驅動器,可改變不同通道的電壓值去作波前的修正。控制器部份則分別比較個人電腦(personal computer,PC)與數位訊號處理器(digital signal processor,DSP)做控制器的不同。
最後,利用前述兩部份完成1 Hz的前饋式系統之系統鑑別(system identification),討論單一輸入單一輸出(single-input & single-output)的系統關係,並對各部份的頻寬限制與改善做一探討與說明。
摘要(英) Adaptive optics is used to compensate the distortion through external disturbance by using adjustable optical devices and wavefront sensors. It already exists many applications and research, in astronomy and military defense. Moreover, it gradually attracts an attention in communication, bioelectronics and laser welding.
Adaptive optics consists of three parts which are the wavefront sensing, the wavefront correction and the reconstruction and control system. An adaptive feedforward control is adopted to compensate the wavefront distortion in our setup. In the wavefront sensing, the photodiode array circuits and the LCD driving circuits are accomplished. We propose a new method to find the LCD phase shift voltage and test the response time of the LCD. Also, a Mach-Zehnder interferometer with LCD using PSI is setup to reconstruct the phase distortion by using photodiode array and CCD camera. In the wavefront correction, deformable mirror driving circuits is accomplished and the channel coupling effect of the deformable mirror is analyzed. In control system, we develop an enbedded DSP system as a controller and compare the performance with a PC.
Finally, we identify the feedforward system model of single input and single output system at 1 Hz, and we discuss the dynamic ranges of the overall system.
關鍵字(中) ★ 可調面鏡
★ 移相干涉術
★ 系統鑑別
★ 適應性光學
關鍵字(英) ★ deformable mirror
★ System ID. PSI
★ Adaptive optics
論文目次 第一章 序論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究動機與目的 6
1-4 論文架構 6
第二章 適應性光學 8
2-1 大氣擾動之因素 8
2-1-1 折射係數擾動之統計分析 8
2-1-2 光波於紊流介質之行進 10
2-1-3 熱發散造成之擾動 12
2-2 適應性光學之系統架構 14
2-3 適應性光學之系統鑑別 17
第三章 波前感測 22
3-1 波前量測方法 22
3-2 干涉術 24
3-2-1 剪切式干涉術 25
3-2-2 Mach-Zehnder干涉術 27
3-3 相位重建 29
3-3-1 移相干涉術 31
3-3-2 相位解饞繞 34
3-4 波前感測器 38
3-4-1 陣列式光偵測器之研製 38
3-4-2 液晶可變延遲器原理 41
3-4-3 液晶可變延遲器驅動器 45
3-4-4 移相干涉術之相位步階尋找 47
3-4-5 響應速度 55
3-4-6 性能測試 59
第四章 波前修正 67
4-1 陣列式可調變聚焦鏡 67
4-2 多通道驅動器之研製 69
4-3 性能測試 77
第五章 實驗結果與討論 81
5-1 微控制器(PC & DSP) 81
5-1-1 DSP 81
5-1-2 PC 88
5-2 實驗結果與討論 90
第六章 結論 99
參考文獻 102
參考文獻 [1] D. M. Alloin and J.-M. Mariotti ed., Adaptive Optics for Astronomy, Kluwer Academic, 1994.
[2] S. R. Restaino, W. Junor, and N. Duric ed., Catching the Perfect Wave: Adaptive Optics and Interferometry in the 21st Century, Astronomical Society of the Pacific Conference, 1999.
[3] F. Roddier ed., Adaptive Optics in Astronmy, Cambridge University Press, 1999.
[4] R. K. Tyson, Principles of Adaptive Optics, 2nd Ed., Academic Press, 1998.
[5] D. G. Crowe, Adaptive Optics and Speckle Imaging, SPIE Press, 1994.
[6] S.-J. Chen and J. S. Gibson, “Feedforward adaptive noise control with multivariable gradient lattice filters,” IEEE transactions on signal processing, 49(3), 511-520, 2001.
[7] R. Q. Fugate, J. F. Riker, J. T. Roark, S. Stogsdill, and B. D. O’Neil, “Laser beacon compensated images of Saturn using a high-speed, near-infrared correlation tracker,” in ESO Conference and Workshop Proceedings on Active and Adaptive Optics, edited by M. Cullum (European Southern Observatory, Garching, Germany), 54, 287–290, 1996.
[8] P. R. McCullough, R. Q. Fugate, J. C. Christou, B. L. Ellerbroek, C. H. Higgins, J. M. Spinhirne, R. A. Cleis, and J. F. Moroney, ‘‘Photoevaporating stellar envelopes observed with Rayleigh beacon adaptive optics,’’ Astrophys. J., 438, 394–403, 1995.
[9] H. B. Rosenstock, J. H. Hancock, “Light propagation through a moving gas,” Appl. Opt., 10(6), 1299-1307, 1971.
[10] F. G. Gebhardt, “High power laser propagation,” Appl. Opt. 15(6), 1479-1493, 1976.
[11] R. K. Tyson, “Adaptive optics and ground-to-space laser communications” Appl. Opt., 35(19), 3640-3646, 1996.
[12] E. J. Fernndez, I. Iglesias, and P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett., 26(10), 746-748, 2001.
[13] H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac., 65, 229, 1953.
[14] L. C. Bradley, J. Herrmann, “Phase compensation for thermal blooming,” Appl. Opt., 13(2), 331-334, 1974.
[15] M. C. Roggemann and B. Welsh, Image Through Turbulence, CRC Press, 1996.
[16] F. G. Smith ed., Atmospheric Propagation of Radiation, SPIE, 1993.
[17] J. M. Beckers, “Adaptive optics for astronomy: principles, performance, and applications,” Annu. Rev. Astron. Astrophys., 31, 13–62, 1993.
[18] D. L. Fried, “Anisoplanatism in adaptive optics,” J. Opt. Soc. Am., 72, 52–61, 1982.
[19] B. M. Welsh, and C. S. Gardner, “Effects of turbulence induced anisoplanatism on the imaging performance of adaptive astronomical telescopes using laser guide stars,” J. Opt. Soc. Am. A, 8, 69–80, 1991.
[20] J.-P. Gaffard and G. Ledanois, “Adaptive optical transfer function modeling,” Proc. SPIE, 1542, 34-45, 1991.
[21] A. N. Kolmogorov, “The local structure of turbulence in incompressible viscous fluids for very large Reynolds’ numbers,” in Turbulence, classic papers on statistical theory, 151–155, 1961.
[22] G. D. Boreman and C. Dainty, “Zernike expansions for non-Kolmogorov turbulence,” J. Opt. Soc. Am. A, 13, 517, 1996.
[23] R. R. Parenti and R. J. Sasiela, “Laser-guide-star systems for astronomical applications,” J. Opt. Soc. Am. A, 11, 288–309, 1994.
[24] A. T. Young, “Seeing: Its cause and cure,” Astrophys. J., 189, 587–604, 1974.
[25] A. Ishimaru, Wave Propagation and Scattering in Random Media, Academic, 1978.
[26] L. M. Frantz, A. A. Sawchuk, and W. von der Ohe, “Optical phase measurement in real time,” Appl. Opt. 18(19), 3301-3306, 1979.
[27] S. E. Troxel, B. M. Welsh, and M. C. Roggemann, “Offaxis optical transfer function calculations in an adaptiveoptics system by means of a diffraction calculation for weak index fluctuations,” J. Opt. Soc. Am. A, 11, 2100–2111, 1994.
[28] D. L. Fried, “Optical resolution through a randomly inhomogeneous medium for very long and very short exposures,” J. Opt. Soc. Am., 56, 1372–1379, 1966.
[29] J. W. Goodman, Statistical Optics, Wiley, 1985.
[30] D. C. Smith, “High-power laser propagation: thermal blooming,” IEEE J. Quant. Electro., 5, 1679, 1969.
[31] L. C. Bradley, J. Herrmann, and J. Herrmann, ”Phase compensation for thermal blooming,” Appl. Opt., 13, 331, 1974.
[32] J.-N. Juang, Appied System Identification, Prentice Hall, 1994.
[33] Lennart Ljung, System Identification Toolbox for Use with MATLAB, Mathworks, 2001.
[34] S.-K. Park, S.-H. Baik, C.-J. Kim, and S. W. Ra, “A study on a fast measuring technique of wavefront using a Shack–Hartmann sensor,” Optics & Laser Technology, 34, 687-694, 2002.
[35] D. B. Dayton, B. Pierson, Spielbusch, and J. Gonglewski, “Atmospheric structure function measurements with a Shack-Hartmann wave-front sensor,” Opt. Lett., 17, 1737–1739, 1992.
[36] G. Harbers, P. J. Kunst, and G. W. R. Leibbrandt, “Analysis of lateral shearing interferograms by use of Zernike polynomials,” Appl. Opt., 35(31), 6162-6172, 1996.
[37] M. P. Rimmer, “Method for Evaluating Lateral Shearing Interferograms,” Appl. Opt., 13(3), 623-629, 1974.
[38] C. Elster, “Exact wave-front reconstruction from two lateral shearing interferograms,” J. Opt. Soc. Am. A, 16(9), 2281-2285, 1999.
[39] H.-H. Lee, J.-H. You, and S.-H. Park, “Phase-shifting lateral shearing interferometer with two pairs of wedge plates”, Opt. Lett., 28(22), 2243-2245, 2003.
[40] F.Roddier, C. Roddier, and N. Roddier, “Curvature sensing: a new wavefront sensing method,” SPIE Proc., 976, 203–209, 1988..
[41] G. Rousset, “Wavefront sensing,” in Adaptive Optics for Astronomy, edited by D. M. Alloin and J.-M. Mariotti ,Kluwer Academic, 115–137, 1994.
[42] D. W. Griffin, “Phase-shifting shearing interferometer,” Opt. Lett. 26, 140-141, 2001.
[43] D. Malacara, Optical Shop Testing, Wiley, 1992.
[44] D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis for Optical Testing, Marcel Dekker, 1998.
[45] 邱銘宏,共光程外差干涉儀的原理與其應用之研究,交通大學光電工程所博士論文,1997。
[46] B. V. Dorrío and J. L. Fernández, “Phase-evaluation methods in whole-field optical measurement techniques,” Meas. Sci. Technol., 10(3), 33-55, 1999.
[47] R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Science, 23(4), 713-720, 1988.
[48] D.C. Ghiglia and M.D. Pritt, Two-dimensional Phase Unwrapping: Theory, Algorithms and Software, John Wiley & Sons, Inc. 1998.
[49] J. M. Huntley, “Noise-immune phase unwrapping algorithm,” Appl. Opt., 28(15), 3268-3270, 1989.
[50] R. Cusack, J. M. Huntley, and H. T. Goldrein, “Improved noise-immune phase-unwrapping algorithm,” Appl. Opt., 34(5), 781-789, 1995.
[51] J. R. Buckland, J. M. Huntley, and S. T. E. Turner, “Unwrapping noisy phase maps by use of a minimum cost matching algorithm,” Appl. Opt., 34(23), 5100-5108, 1995.
[52] D. J. Bone, “Fourier fringe analysis: the Two-dimensional phase unwrapping problem,” Appl. Opt., 30(25), 3627-3632, 1991.
[53] Y. Xu and C. Ai, “Simple and effective phase unwrapping technique,” SPIE Proc., 2003, 254-263, 1993.
[54] J. A. Quiroga, A. Gonz’alez-Cano, and E. Bernabeu, “Phase-unwrapping algorithm based on an adaptive criterion,” Appl. Opt., 34(14), 2560-2563, 1995.
[55] H. Lim, W. Xu, and X. Huang, “Two new practical methods for phase unwrapping,” Proceedings of the International Geoscience and Remote Sensing Symposium, (Tokyo, Japan), 196-198, 1995.
[56] D. Derauw, “Phase unwrapping using coherence measurements,” Synthetic Aperture Radar and Passive Microwave Sensing, SPIE Proc., 2584, 319-324, 1995.
[57] http://www.analog.com
[58] http://www.meadowlark.com
[59] http://www.meadowlark.com/catalog/LiquidCrystals/liqcrys1.htm
[60] M. A. Vorontsov and G. W. Carhart, “Adaptive phase-distortion correction based on parallel gradient-descent optimization,” Opt. Lett., 22(12),907-909, 1997.
[61] T. G. Bifano, J. Perreault, R. K. Mali, and M. N. Horenstein, “Microelectromechanical deformable mirrors,” IEEE J. Quant. Electro., 5(1), 83-89, 1999.
[62] M. Horenstein, T. Bifano, R. K. Mali, and N. Vandelli, “Electrostatic effects in micromachined actuators for adaptive optics,” J. Electrostat., 42, 1–2, 1997.
[63] http://www.intellite.com
指導教授 陳顯禎、葉則亮
(Shean-Jen Chen、Tse-Liang Yeh)
審核日期 2004-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明