博碩士論文 91323119 詳細資訊


姓名 蘇園登(Yuan-Deng Su)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 表面電漿共振相位影像系統
(Surface Plasmon Resonance Phase Image System)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 表面電漿共振(surface plasmon resonance, SPR)感測器可量測在固體與氣體或固體與液體界面之奈米膜層厚度與介電常數之微量變化。有別於一般單點或區域性之量測,利用表面電漿共振相位影像系統(phase image system)不僅可以提供大量平行空間資訊,且可獲得高靈敏之相位資訊。表面電漿共振相位偵測是利用同時包含有P-wave與S-wave之入射光激發表面電漿子(surface plasmons, SPs),由於在SPR角時只有P-wave會因待測物條件改變而造成相位劇烈變化,S-wave則否,因此以量測反射光P-wave與S-wave之間相位差變化來獲得感測界面上之變化資訊。
本論文首先利用一改良式Mach-Zehnder移相干涉術(phase-shift interferometry, PSI)來觀測空間平面上之相位資訊,配合五步相位還原演算法來完成相位的重建。在此量測奈米膜層之相位影像差異並且討論此干涉方式之長時間相位穩定與空間解析度。為了獲得較佳的相位穩定度,論文中提出兩種共光程(common-path)之表面電漿共振相位干涉術,一為共光程外差式干涉術(heterodyne interferometry),一為共光程液晶(liquid crystal)移相干涉術。利用共光程外差式干涉術結合鎖相放大(lock-in amplifier)技術解相位,具有光學機構簡單、高穩定度與動態量測之優點;而創新之共光程液晶移相干涉術不但具有上述之優點外還具有高解析影像資訊與價格低廉之優點,於長時間下之相位穩定可達10-3π並可靈敏的量測出5x10-6RIU之折射率變化。
摘要(英) Surface plasmon resonance (SPR) sensor can measure the thickness or dielectric constant change of nanolayer between solid-gas or solid-liquid interface. SPR phase image system not only can obtain high sensitivity phase information but also can provide high-throughout space information.
Using the incident wave which including P-wave and S-wave to excite surface plasmon, P-wave has a violent phase jump and shift by the sample change in the resonance angle, and S-wave not. According to above, measure the phase difference of reflection wave between P-wave and S-wave to obtain SPR phase information.
First, by use the modified Mach-Zehnder phase shifting interferometry and collocate five step phase reconstruct to measure the spatial phase variation of the nanolayer and discuss the phase stability and drift phenomenon.
In order to obtain the long-term phase stability, the paper bring up two common-path SPR interferometry, the one is common-path heterodyne interferometry and the other is common-path liquid phase-shift interferometry. Common-path heterodyne interferometry that combine lock-in amplifier has several merits such as simple optical setup, high stability, high accuracy and rapid measurement. Common-path liquid phase-shift interferometry not only have several merits like above but provide high resolution and low cost. The phase stability can achieve 10-3π in long-term measurement and the sensitivity can achieve 5x10-6RIU.
關鍵字(中) ★ 移相干涉術
★ 共光程
★ 表面電漿共振
★ 外差式干涉
關鍵字(英) ★ heterodyne
★ phase-shift
★ common-path
★ surface plasmon resonance
論文目次 摘要 I
Abstract III
致謝 IV
目錄 V
圖目錄 IX
表目錄 XII
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究動機與方法 3
1-4 論文架構 5
第二章 表面電漿共振 6
2-1 表面電漿波與衰逝全反射 6
2-1-1 橫電模態 8
2-1-2 橫磁模態 10
2-2 光激發表面電漿波方式與量測方式 13
2-2-1 光波耦合方式 14
2-2-2 量測方式 15
2-3 Kretschmann組態下SPR反射率及相位曲線 16
2-4 SPR之相位特性 21
2-4-1 不同厚度金膜下之SPR相位變化 23
2-4-2 不同待測物折射率與厚度之SPR相位關係 24
第三章 移相干涉術與相位重建 28
3-1 光之干涉 28
3-2 移相干涉術 30
3-2-1 Hariharan相位還原演算法 30
3-2-2 移相誤差 32
3-3 相位跳躍與解纏繞 34
3-3-1 調變2π相位校正 34
3-3-2 Cellular automata之相位解纏繞 36
第四章 Mach-Zehnder移相干涉影像系統 39
4-1 表面電漿共振感測器設計與製作 39
4-1-1 感測器設計 40
4-1-2 感測器製作 40
4-2 系統架構 43
4-2-1 光學系統 43
4-2-2 自動化系統整合 45
4-3 實驗結果與討論 47
4-3-1 相位差量測 48
4-3-2 相位穩定量測 52
第五章 共光程外差式干涉術相位量測 55
5-1 共光程外差式干涉術原理 56
5-2 系統架構 57
5-2-1 外差光源 58
5-2-2 光路配置 58
5-3 相位解析 61
5-4 實驗結果 63
5-4-1 穩定度量測 63
5-4-2 解析度量測 64
5-5 實驗討論 65
第六章 共光程液晶相位延遲移相干涉影像系統 67
6-1 液晶可變相位延遲器 68
6-1-1 基本原理 68
6-1-2 液晶延遲器構成與驅動 70
6-1-3 液晶可變延遲器驅動器 72
6-2 系統架構 73
6-2-1 光學架構 73
6-2-2 利用干涉強度做五步相位的找尋 74
6-3 實驗結果與討論 77
6-3-1 五步相位與還原 77
6-3-2 長時間相位穩定度量測 78
6-3-3 解析度量測 79
6-3-4 角度與相位關係量測 81
6-3-5 奈米薄膜相位影像 82
6-4 實驗討論 83
第七章 結論 85
參考文獻 87
參考文獻 [1] H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings,” Springer-Verlag, Berlin, 1988.
[2] B. Liedberg, C. Nylander, and I. Lundsr, “Surface plasmon resonance for gas detection and biosensing,” Sensor and Actuators B, 4, 299-304, 1983.
[3] J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B, 54, 3-15, 1999.
[4] F.-M. Hsiu, S.-J. Chen, and C.-H. Tsai, “Surface plasmon resonance imaging system with Mach-Zehnder phase-shift interferometry for DNA micro-array hybridization,” Proc. SPIE, 4819, 167-174, 2002.
[5] S.-J. Chen, F.-M. Hsiu, C.-Y. Tsou, Y.-C. Chen, F.-C. Chien, G.-Y. Lin, and Y.-D. Su, “Surface plasmon resonance phase-shift interferometry: Real-time DNA microarray hybridization analysis,” Journal of Biomedical Optics, 2003.
[6] C. E. Jordan and R. M. Corn, “Surface plasmon resonance imaging measurement of electrostatic biopolymer adsorption onto chemically modified gold surface,” Anal. Chem., 69, 1449-1456, 1997.
[7] P. I. Nikitin, A. N. Grigorenko, A. A. Beloglazov, M. V. Valeiko, A. I. Savchuk, O. A. Savchuk, G. Steiner, C. Kuhne, A. Huebner, and R. Salzer, “Surface plasmon resonance interferometry for micro-array biosensing,” Sensor and Actuators A, 85, 189-193, 2000.
[8] A. G. Notcovich, V. Zhuk, and S. G. Lipson, “Surface plasmon resonance phase imaging,” Appl. Phys. Lett., 76, 1665-1667, 2000.
[9] R.H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys.
Rev., 106, 874, 1957.
[10] C. J. Powell and J. B. Swan, “Effect of oxidation on the characteristics loss sepectra of aluminum and magnesium,” Phys Rev., 118, 640, 1960.
[11] F. F. Bier, F. Kleinjung, and F. W. Scheller, “Real-time measurement of nucleic-acid hybridization using evanescent-wave sensors: steps towards the genosensor,” Sensors and Actuators B, 38-39, 378-382, 1997.
[12] Z. Salamon, M. F. Brown, and G. Tollin, “Surface plasmon resonance spectroscopy: probing molecular interactions within membranes,” Trends in Biomedical Sciences, 24, 213-219, 1999.
[13] G. Steiner, V. Sablinskas, A. Hubner, C. Kuhne, and R. Salzer, “Surface plasmon resonance imaging of microstructured monolayer,” J. Molecular Structure, 509, 265-273, 1999.
[14] S.-J. Chen, F.-C. Chien, G.-Y. Lin, and K.-C. Lee, “Enhanced the resolution of surface plasmon resonance biosensors by controlling size and distribution of nanoparticles,” Optics Letters, 29(12), 1390, 2004.
[15] H. P. Ho and W. W. Lam, “Application of differential phase measurement technique to surface plasmon resonance sensors,” Sensors and Actuators B, 96, 554-559, 2003.
[16] S.-J. Chen, F.-M. Hsiu, C.-H. Tsai, C.-Y. Tsou, and C.-M. Tzeng, “Surface plasmon resonance phase-shift interferometry: Real-time DNA microarray hybridization analysis,” U.S. Patent Application Serial Number 60/367,890 (filed on March 26, 2003.)
[17] 陳顯禎、許峰銘、蔡建宏、鄒嘉原,“表面電漿共振影像系統及其感測方法”,ROC Patent Application, 125, 398, 2002.
[18] K. Welford, “The method of attenuated total reflection,” IOP Short Meeting Series No.9, Institute of Physics, 25-78, 1987.
[19] IOP Publishing Ltd, Surface Plasmon-polaritations, 1987.
[20] A. Yariv and P. Yeh, Optical Waves in Crystals, John Wiley & Sons, New tork, 1984.
[21] E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch, 23A, 2135-2136, 1968.
[22] J. Homola and S. S. Yee, “Surface plasmon resonance sensors: review, ” Sensors and Actuators B, 54, 3-15, 1999.
[23] R. W. Wood, “On a remarkable case of uneven distribution of light
in a diffraction grating spectrum,” Phil. Magm., 4, 396–402, 1902.
[24] A. Otto, “Excitation of surface plasma waves in silver by the
method of frustrated total reflection,” Z. Physik, 216, 398–410, 1968.
[25] E. Kretschmann and H. Raether, “Radiative decay of non-radiative
surface plasmons excited by light,” Z. Naturforsch., 23A, 2135–2136, 1968.
[26] Pharmacia Biosensor AB Product Catalog, 1995.
[27] I. Stemmler, A. Brecht, and G. Gauglitz, “Compact surface plasmon resonance-transducers with spectral readout for biosensing applications,” Sensors and Autuators B, 54, 98-105, 1999.
[28] B. Chadwick and M. Gal, “An optical temperature sensor using surface plasmons,” Jpn. J. Appl. Phys. Part1, 32, 2716-2717,1993.
[29] V. E. Kochergin, A. A. Beloglazov, M. V. Valeiko, and P. I. Nikitin, “Phase properties of a surface-plasmon resonance from the viewpoint of sensor application,” Quantum Electronics, 28, 444-448, 1998.
[30] M. A. Heald and J. B. Marion, Classical Electromagnetic Radiation, Saunders College, 3rd Ed., 1995.
[31] P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Applied Optics, 26(13), 2504-2505, 1987.
[32] J. Novak, ”Methods for 2-D phase unwrapping in matlab,” Department of Physics, Faculty of Civil Engineering, CTU in Prague, 2000.
[33] R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry : two-dimensional phase unwrapping,” Radio Science, 23(4), 713-720, 1988.
[34] D. C. Ghiglia, G. A. Mastin, and L. A. Romero, “Cellular-automata method for phase unwrapping,” J. Opt. Soc. Am.A, 4, 267-280, 1987.
[35] P. Hariharan, “Basics of interferometry”, Academic Press, INC, 189, 66-77, 1991
[36] I. C. Khoo, B. D. Guenther, M. V. Wood, P. Chen, and M. Y. Shih, “Coherent beam amplification with a photorefractive liquid crystal,” Optics Letters, 22, 1229-1231, 1997.
[37] http://www.meadowlark.com/
[38] I. C. Khoo, Liquid Crystals, John-Wiley, New York, 1995.
指導教授 葉則亮、陳顯禎
(Tse-Liang Yeh、Shean-Jen Chen)
審核日期 2004-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡