博碩士論文 91324006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.146.65.212
姓名 林佳珈(Jia-Jia Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 穿膜胜肽與生物細胞膜間的交互作用之探討(Ι)-膽固醇的含量對蜂毒胜肽穿膜機制之影響
(Studies of Interactions between Penetration Peptides and Cell Membranes (Ι)--The Effects of Cholesterol Content on Melittin Interaction with Lipid Membrane)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要是利用微脂粒(liposome)形成之脂雙層膜來建立一個模擬生物細胞膜系統,並且結合壓電石英晶體微天平(QCM)生物感測器以及恆溫滴定微卡計(ITC)等儀器,來研究探討生物分子與生物細胞膜間的交互作用機制。整個研究的主題分為兩個部分,第一個部分是探討微脂粒的組成及膽固醇含量對形成脂雙層膜的影響,第二個部分則是探討膽固醇的含量對蜂毒胜肽(melittin)與脂雙層膜的交互作用之影響。藉由壓電石英晶體微天平(QCM)及恆溫滴定微卡計(ITC)來探討蜂毒胜肽與脂雙層膜交互作用之動力學與熱力學,並利用原子力學顯微鏡(AFM)及雷射粒徑儀(DLS)偵測其構形的變化。
在形成脂雙層膜的部份,我們將金膜表面經過適當的化學改質修飾後,吸附上不同組成之微脂粒以形成脂雙層膜。實驗結果顯示,當微脂粒的主要脂質成分為卵磷脂(egg PC)時,微脂粒在吸附於金膜表面後,原本球體(Vesicle)的結構會破裂並形成平板狀的脂雙層膜(lipid bilayer);而以二棕櫚酸磷脂醯膽鹼(DPPC)為主要脂質的微脂粒,在吸附於金膜表面後,其球形結構並無破裂現象而僅有些許變形。在蜂毒與脂雙層膜的交互作用之研究方面,實驗中使用二棕櫚酸磷脂醯膽鹼(DPPC)混和不同比例的膽固醇(0, 10, 30 %)作為微脂粒的成分,與不同濃度的蜂毒胜肽進行反應。由QCM、ITC、AFM、DLS等實驗顯示,蜂毒胜肽之穿膜行為是一熵驅動的程序,而熵的來源應為去水合之結果,並且用Two-state model來分析其動力學參數,發現當脂雙層膜的膽固醇含量高達30%時,明顯地抑制了蜂毒胜肽(melittin)的結合行為與穿膜行為。
摘要(英) Liposomes have been used to mimic natural cell membrane for various studies. In this investigation, the membrane models are adapted to study and establish a correlation between the penetration peptides upon binding with cell membranes and the biological specificities. Different structures of liposomes with different lipids and various content of cholesterol were observed on the biosensor (i.e. Quartz Crystal Microbalance (QCM)) with different liposome immobilization chemistry. With the mimic cell membrane system, the interaction kinetics and thermodynamics information of the melittin with the liposomes were studied by QCM, and isothermal titration calorimetry (ITC).The conformation of the liposomes was monitored by Atomic Force Microscope (AFM) on the sensor surface and by Dynamic Laser Scattering (DLS) in solution. The binding enthalpy measurements between peptides and the liposomes by ITC reveal that the penetration or insertion of melittin into the liposomes is entropy driven. The content of the cholesterol and the dehydration behavior of the presence of cholesterol in lipid bilayer contribute profoundly on the penetration behavior of the peptide.
關鍵字(中) ★ 脂雙層膜
★ 蜂毒胜肽
★ 膽固醇
關鍵字(英) ★ lipid membrane
★ cholesterol
★ melittin
論文目次 中文摘要
英文摘要
目錄
圖目錄
表目錄
第一章 導論
第1-1節 研究動機與目的………………………………1
第1-2節 壓電石英晶體微天平…………………………3
1-2.1 生物感測器……………………………………………..3
1-2.2 壓電石英晶體於感測器上的應用……………………..4
1-2.3 氣相感測………………………………………………..7
1-2.4 液相感測………………………………………………..8
1-2.5 壓電石英晶體微天平的特性與感測原理……………14
第1-3節 生物細胞膜…………………………………..24
1-3.1 生物細胞膜的基本性質………………………………24
1-3.2 生物細胞膜的組成與結構……………………………25
1-3.3 常見磷脂質的種類與特性……………………………29
1-3.4 膽固醇(cholesterol) …………………………………32
1-3.5 細胞膜的流動性(fluidty) …………………………….35
第1-4節 微脂粒………………………………………..37
1-4.1 微脂粒的結構……..………………………………….37
1-4.2 微脂粒的型態……..………………………………….41
1-4.3 微脂粒的穩定性..…………………………………….44
1-4.4 微脂粒的應用……..………………………………….49
第1-5節 穿膜胜肽與細胞溶解性胜肽………………..51
1-5.1 細胞溶解性胜肽與抗菌胜肽..……………………….51
1-5.2 穿膜胜肽(transmembrane peptide)………………..52
1-5.3 穿膜胜肽的膜轉移(membrane translocation)機制……………………………………53
1-5.4 穿膜胜肽(transmembrane peptide)的毒性.………..54
1-5.5 穿膜胜肽與細胞溶解性胜肽的 研究發展………………………………….…………..55
1-5.6 蜂毒胜肽(melittin)…………………..………………..58
1-5.6.1 Melittin的結構……………………...……………..59
1-5.6.2 Melittin的活性……………………...……………..61
1-5.6.3 Melittin於醫學上的應用…………...……………..61
第二章 於金膜表面形成脂雙層膜系統之方法與偵測…………………………………………………..63
第2-1節 前言…………………………………………..63
第2-2節 儀器設備與材料……………………………..63
2-2.1 藥品………………………….………………………..63
2-2.2 儀器設備……………………………………………...64
第2-3節 實驗方法……………………………………..64
2-3.1 微脂粒的製備……………….………………………..64
2-3.2 粒徑量測……………………………………………...65
2-3.3 脂雙層膜的(lipid bilayer)形成……………………….66
2-3.4 AFM影像偵測………………………………………..68
第2-4節 實驗結果……………………………………..70
2-4.1 微脂粒於金膜表面吸附行為之偵測.………………..70
2-4.2 AFM影像偵測……...………………………………...79
2-4.3 結果討論…….………………………………………..84
第三章 蜂毒胜肽Melittin與脂雙層膜間的交互作用機制之探討
第3-1節 前言…………………………………………..86
第3-2節 儀器設備與材料……………………………..86
3-2.1 藥品………………………….………………………..86
3-2.2 儀器設備……………………………………………...86
第3-3節 實驗方法……….……………………………..87
3-3.1 QCM實驗..………………….………………………..87
3-3.2 ITC實驗.....………………….………………………..88
3-3.3 AFM影像偵測……...………………………………...89
3-3.4 粒徑量測....………………….………………………..89
第3-4節 實驗結果……….……………………………..91
3-4.1 QCM實驗..………………….………………………..91
3-4.2 ITC實驗.....………………….………………………105
3-4.3 AFM實驗…………...……………………………….112
3-4.4 DLS實驗....………………….………………………118
3-4.5 結果討論…….………………………………………120
第四章 總結………………………………………...127
參考文獻…………………………………………….129
參考文獻 [1] Grate J. W., S. J. Martin, R. M. White, “Acoustic wave microsensors.” Anal. Chem. 1993, 65, A940-A948.
[2] Lu C., and A.W. Czanderna(Eds.), “Application of Piezoelectric Quartz Crystal Microbalance.” Elsevier Science Publishing Company Inc. 1984.
[3] Konash P. L., and G. J. Bastiaans, “Piezoelectric Crystal as Detectors in Liquid Chromatography.” Anal. Chem. 1980, 52, 1929-1931.
[4] Nomura T., “Single-Drop Method for Determination of Cyanide in Solution with a Piezoelectric Quartz Crystal.” Anal. Chim. Acta. 1981, 124, 81-84.
[5] Nomura T., and M. Iijima, “Electrolytic Determination of Nanomolar Concentrations of Silver in Solution with a Piezoelectric Quartz Crystal.” Anal. Chim. Acta. 1981, 131, 97-102.
[6] Thompson M., C. L. Arthur, G. K. Dhaliwal, “Liquid-Phase Piezoelectric and Acoustic Transmission Studies of Interfacial Immunochemistry.” Anal. Chem. 1986, 58, 1206-1209.
[7] Murumatsu H., K. Kajiwara, E. Tamiya, and I. Karube, “Piezoelectric Immuno Sensor for the Detection of Candida albicans Microbes.” Anal. Chem. 1986, 188, 257-261.
[8] Zubay G. L., W. W. Parson, D. E. Vance, Principles of Biochemistry, McGraw-Hill, Inc. 1995.
[9] King W. H., “Piezoelectric Sorption Detector.” Anal. Chem. 36, 1735-1739.
[10] Leyva J. A. M., J. L. H. H. Decisneros, D. G. G. Debarreda, “ A Coated Piezoelectric Crystal Sensor for Acetic-Acid Vapor Determination.” Talanta 1993, 40, 1725-1729.
[11] Okahata Y., H. Ebato, “Synthetic Chemoreceptive Membranes .11. Detection of Odorous Substances by Using a Lipid-Coated Quartz-Crystal Microbalance in the Gas-Phase.” Bulle. Chem. Soc. Jpn., 63,3082-3088.
[12] Sauerbrey G. Z., “Verwendung von Schwingquarzen zur Wagung dunner Schichten undzur Mikrowagung.” Z. Phys. 1959, 155, 206-222.
[13] Muratsugu M., F. Ohta, Y. Miya, T. Hosokawa, N. Kamo, H.Ikeda, “Quartz Crystal Microbalance for the Detection of Microgram Quantities of Human Serum Albamin:Relationship between the Frequency Change and the Mass of Protien Asorbed.” Anal. Chem. 1993, 65, 2933-2937.
[14] Barnes C., C. D’Silva, J. P. Jones, T. J. Lewis, “Lectin Coated Piezoelectric Crystal Biosensors.” Sensor Actuat B-Chem. 1992, 7, 347-350.
[15] Konig C., M. Gratzel, “Development of a Piezoelectric Immunosensor for the Detection of Human Erythrocytes.” Alalytic Chimica. Acta. 1993, 276, 329-333.
[16] KoBlinger C., S. Drost, F. Aberl, H. Wolf, S. Koch, P. Woias, “A Quartz Crystal Biosensor for Measurement in Liquid.” Biosens. Bioelectron. 1992, 7, 397-404.
[17] Konig C., M. Gratzel, “A Novel Immunosensor for Herpes Viruses.” Anal. Chem. 1994, 66, 341-344.
[18] Konig C., M. Gratzel, “Detection of Human T-lymphocytes with a Piezoelectric Immunosensor.” Alalytic Chimica. Acta. 1993, 281, 13-18.
[19] Muramatsu H., J. M. Dicks, I. Karube, E. Tamiya, “Piezoelectric Crystal Biosensor Modified with Protein-A for Determination of Immunogrobulins.” Anal. Chem. 1987, 59, 2760-2763.
[20] Geddes N. J., E. M. Paschinger, D. N. Furlong, Y. Ebara, Y. Okahata, K. A. Than, J. A. Edgar, “Piezoelectric Crystal for the Detection in Buffer Solutions.” Sensor Actuat B-Chem. 1994, 17, 125-131.
[21] Muramatsu H., K. Kajiwara, E. Tamiya, I. Karube, “Piezoelectric Immunosensor for the Detection of Cabdida Albicans Microbes.” Alalytic Chimica. Acta. 1986, 188, 257-261.
[22] Yamaguchi S., T. Shimomura, “Adsorption, Immobilization, and Hybridization of DNA Studied by the Use of Quartz Crystal Oscillators.” Anal. Chem. 1993, 65, 1925-1927.
[23] Su H., K. M. R. Kallury, M. Thompson, “Interfacial Nucleic Acid Hybridization Studied by Random Primer 32P Labeling and Liquid-Phase Acoustic Network Analysis.” 1994, 66, 769-777.
[24] Muratsugu M., S. Kurosawa, N. Kamo, “Detection of Antistreptolysino Antibody:Application of an Initial Rate Method of Latex Piezoelectric Immunoassay.” Anal. Chem. 1992, 64, 2483-2487.
[25] Redepenning J., T. K. Schlesinger, E. J. Mechalke, D. A. Puleo, R. Bizioc, “Osteoblast Attachment Monitored with a Quartz Crystal Microbalance.” Anal. Chem. 1993, 65, 3387-3381.
[26] Konig B., M. Gratzel, “Long-Term Stability and Improved Reusability of a Piezoelectric Immunosensor for Human Erythrocytes.” Anal. Chim. Acta. 1993, 280, 37-41.
[27] Guibault G. G., “A piezoelectric immunobiosensor for atrazine in drinking water.” Biosens Bioelectron 1992, 7, 411-419.
[28] White F. M., “Viscous Fluid Flow.” McGraw-Hill, New York 1974.
[29] Bruckenstein S., M. Shay, “Experimental Aspects of Using Quartz Crystal Microbalance in Solution.” Electrochim. Acta. 1985, 30, 1295-1300.
[30] Kanazawa K. K., J. G. Gordon, “Frequency of a Quartz Microbalance in Contact with Liquid.” Anal. Chem. 1985, 57, 1770-1771.
[31] Hengerer A., J. Decker, E. Prohaska, S. Hauck, C. Ko¨ßlinger, H. Wolf, “Quartz crystal microbalance (QCM) as a device for the screening of phage libraries.” Biosens. Bioelectron. 1999,14, 139 –144.
[32] Israelachvili J. N., “Intermolecular and Surface Force.” Academic Press(Lodon) 1992.
[33] Bangham D., M. M. Standish and J. C. Watkins, “Diffusion of Univalent Ions across the Lamellae of Swollen Phosopholipids.” J. Mol. Biol. 1965, 13, 238-252.
[34] Lasic D. D., “Liposomes:from Physics to Applications.” Elsevier Science Publishers B. V., Amsterdam, 1993.
[35] New E. R. C., “Liposomes:a Practical Approach.” Oxford University Press, New York, 1990.
[36] Matsumura H., K. Watanabe, K. Furusawa, “Flocculation Behavior of Egg Phosphatidylcholine Liposomes Caused by Ca2+ Ion.” Colloid Surface A 1995, 98, 175-184.
[37] Carrion F. J., A. D. Maza, J. L. Parra, “The Influence of Ionic Strength and Lipid Bilayer Charge on Stability of Liposomes.” J. Colloid Interf. Sci. 1994, 164, 78-87.
[38] Lev D., A. Gulik, M. Seigneuret, J. L. Rigaud, “Phospholipid Vesicle Solubilization and Reconstitution by Detergents Symmetrical Analysis of the Two Processes Using Octaethylene Glycol Mono–n–dodecyl Ether.” Biochemistry 1990, 29, 9480-9488.
[39] Minami H., T. Inoue, R. Shimozawa, “Berylium Ion can Induce the Aggregation of Phosphatidylcholine Vesicles.” Langmuir 1996, 12, 3574-3579.
[40] Taylor K. M. G., R. M. Morris, “Thermal Analysis of Phase Transition Behaviour in Liposomes.” Thermochimica Acta 1995, 248, 289-301.
[41] Chen Z., R. P. Rand, “The Influence of Cholesterol on Phospholipid Membrane Curvature and Bending Elasticity.” Biophys. J. 1997, 73, 267-276.
[42] Grit M., D. J. A. Crommelin, “Chemical Stability of Liposomes:Implications for their Physical Stability.” Chem. Phys. Lipids 1993, 64, 3-18.
[43] Grit M., W. J. M. Underberg, D. J. A. Crommelin, “ Hydrolysis of Saturated Soybean Phosphatidylcholine in Aqueous Liposome Dispersions.” J. Pharm. Sci. 1995, 82, 362-366.
[44] Derossi D., S. Calvet, A. Trembleau, A. Brunissen, G. Chassaing, A. Prochiantz, “Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent.” J. Biol. Chem. 1996, 271(30): 18188–18193.
[45] Pouny Y., D. Rapaport, A. Mor, P. Nicolas, Y. Shai, “Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes.” Biochemistry 1992, 31(49): 12416–12423.
[46] Matsuzaki K., K. Sugishita, K. Miyajima, “Interactions of an antimicrobial peptide, magainin 2, with lipopolysaccharide- containing liposomes as a model for outer membranes of gram-negative bacteria.” FEBS Lett. 1999, 449(2–3): 221–224.
[47] Gazit E., W. J. Lee, P. T. Brey, Y. Shai, “Mode of action of the antibacterial cecropin B2: a spectrofluorometric study.” Biochemistry 1994, 33(35): 10681–10692.
[48] Elmquist A., “Cell-penetrating peptides: cellular uptake and biological activities.” 2003
[49] Park C. B., H. S. Kim, S. C. Kim, “Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions.” Biochem. Biophys. Res. Commun. 1998, 244(1): 253–257.
[50] Haberman E., “Bee and wasp venoms.” Science 1972, 177, 314-322.
[51] Schwarz G., G. Beschiaschvili, “Thermodynamic and kinetic studies on the association of milittin with a phospholipid bilayer.” Biochim. Biophys. Acta. 1989, 979, 82-90.
[52] Terwilliger T. C., D. Eisenberg, “The structure of melittin .Ⅱ. Interaction of the structure.” J.Biol. Chem. 1982, 257, 6016-6022.
[53] Brown L. R., W. Braun, A. Kumar, K. Wutherich, “ High resolution nuclear magnetic resonance studies of the conformation and orientation of melittin bound to a lipid-water interface.” Biophys. J. 1982, 37, 319-328.
[54] Drake J. C., R. C. Hider, “The structure of melittin in lipid bilayer membranes.” Biochim. Biophys. Acta. 1979, 555, 371-373.
[55] Talbot J. C., J. Dufourcq, J. DeBony, J. F. Faucon, C. Lussan, “Conformational change and self-association of monomer melittin.” FEBS 1979, 102, 191-193.
[56] Quay S. C., C. C. Condie, “Conformational studies of aqueous melittin: thermodynamic parameters of the monomer-tetramer self-association reaction.” Biochemistry 1983, 22, 695-700.
[57] Vogel H., F. Jahnig, “The structure of melittin in membranes.” Biophys. J. 1986, 50, 573-582.
[58] Terwilliger T. C., L. Weissman, D. Eisenberg, “The structure of melittin in the formⅠcrystals and its implication for melittin’s lytic and surface activities.” Biophys. J. 1982, 37:353-361.
[59] Terwilliger T. C., D. Eisenberg, “The structure of melittin.Ⅰ. Structure determination and partial refinement.” J. Biol. Chem. 1982, 257, 6010-6015.
[60] Dempsey C. E., “The actions of melittin on membranes.” Biochim. Biophys. Acta. 1990, 1031:143-161.
[61] Lauterwein J., L. R. Brown, K. Wutherich, “High resolution 1H-NMR studies of self-aggregation of melittin in aqueous solution.” Biophys. Acta. 1980, 622:231-244.
[62] Dawson C. R., A. F. Drake, J. Helliwell, R. C. Hider, “The interaction of bee melittin with lipid bilayer membranes.” Biochim. Biophys. Acta. 1978, 510, 75-86.
[63] Knoppel E., D. Eisenberg, W. Wickner,”Interaction of melittin, a perprotein model, with detergents.” Biochemistry 1979, 18, 4177-4181.
[64] Vogel H., “Comparsion of the conformation and orientation of alamethicin and melittin in lipid membranes.” Biochemistry 1987, 26, 4562-4572.
[65] Frey S., L. K. Tamm, “Orientation of melittin in phospholipid bilayers. A polarized attenuated total reflection infrared study.” Biophys. J. 1981, 103, 679-681.
[66] Sessa G., J. H. Freer, G. Colacicco, G. Weismann, “Interaction of a lytic peptide, melittin, with lipid membrane systems.” J. Biol Chem. 1969, 244, 3575-3582.
[67] Rex S., “Pore formation induced by the peptide melittin in different lipid vesicle membranes.” Biophys. Chem. 1996, 58, 75-85.
[68] Laine R. O., B. P. Morgan, A. F. Esser, “Comparison between complement and melittin hemolysis:Anti-melittin antibodies inhibit complement lysis.” Biochemistry 1988, 27, 5308-5314.
[69] Tosteson M. T., Tosteson D. C., “The sting:Melittin forms channels in lipid bilayers.” Biophys. J. 1981, 36, 109-116.
[70] Batenberg T., M. Lafleur, “Study of vesicle leakage induced by melittin.” Biochim. Biophys. Acta. 1995, 1235, 452-460.
[71] Pawlak M., U. Meseth, B. Dhanapal, M. Mutter, H. Vogel, “Template-assembled melittin:Structural and functional characterization of a designed, synthetic channel-forming protein.” Protein Sci. 1994, 3,1788-1805.
[72] Gravitt K. R., N. E. Ward, C. A. O’Brian, “Inhibition of protein kinase C by melittin:antagonism pf binding interactions between melittin and the catalytic domain by action-site binding of Mg ATP.” Biochem. Pharmacol. 1994, 47, 425-427.
[73] Kajita S., H. Iizuka, “Melittin-induced alteration of epidermal adenylate cyclase responses.” Acta. Derm. Venereol. 1987, 67, 295-300.
[74] Hasse I., B. M. Czarnetzki, T. Rosenbach, “Thrombin and melittin activate phospholipase C in human HaCaT keratinocytes.” Exp. Dermatol. 1996, 5, 84-88.
[75] Saini S. S., A. K. Chopra, J. W. Peterson, “Melittin activates endogenous phospholipase D during cyctolysis of human monocytic leukemia cells.” Toxicon 1999, 37, 1605-1619.
[76] 何怡瑱,“三團聯聚合物(PF-127)和磷脂質間交互作用力量測和磷脂質微脂粒穩定度之探討”,國立中央大學/化學工程研究所/89年度/碩士論文。
[77] 楊淑萍,“三團聯共聚物及鎂離子對微脂粒物理穩定性之影響及其機制探討”,國立中央大學/化學工程研究所/88年度/碩士論文。
[78] Lahiri J, P. Kalal, A. G. Frutos, S. J. Jonas, and R. Schaeffler, “Method for Fabricating Supported Bilayer Lipid Membranes on Gold.” Langmuir 2000, 16, 7805-7810.
[79] Reimhult E., F. Ho¨o¨k, and B. Kasemo, “Intact Vesicle Adsorption and Supported Biomembrane Formation from Vesicles in Solution: Influence of Surface Chemistry, Vesicle Size.” Temperature, and Osmotic Pressure.” Langmuir 2003, 19, 1681-1691.
[80] Dufourc E. J., E. J. Parish, S. Chitrakorn, I. C. P. Smith, “Structural and dynamical details of cholesterol-lipid interactions as revealed by deuterium NMR.” Biochemistry 1984, 23:6062–6071
[81] Stockton G. W., I. C. P. Smith, “A deuterium nuclear magnetic resonance study of the condensing effect of cholesterol on egg phosphatidylcholine bilayer membranes. Ι. Perdeuterated fatty acid probes.” Chem. Phys. Lipids 1976, 17:251–263
[82] Bereza U. L., G. J. Brewer, G. M. Hill, “Effect of dietary cholesterol on erythrocyte peroxidant stress in vitro and in vivo.” Biochim. Biophys. Acta 1985, 835, 434–440.
[83] Clemens M. R. and H. D. Waller, “Lipid peroxidation in erythrocytes.” Chem. Phys. Lipids 1987, 45, 251–268.
[84] Parasassi T., A. M. Giusti, M. Raimondi, G. Ravagnan, O. Sapora, E. Gratton, “Cholesterol protects the phospholipid bilayer from oxidative damage.” Free Radic. Biol. Med. 1995b, 19, 511–516.
[85] Samuni A. M., A. Lipman, Y. Barenholz, ”Damage to liposomal lipids: protection by antioxidants and cholesterol-mediated dehydration.” Chem. Phys. Lipids 2000, 105, 121–134.
[86] Ladokhin A. S., M. E. Seleted, S. H. White, “Sizing membrane pores in lipid vesicles by leakage of co-encapsulated makers : pore formation by melittin.” Biophys. J. 1997, 72, 1762–1766.
[87] Benachir T., M. Monette, J. Grenier, M. Lafleur, “Melittin-induced leakage from phosphatidylcholine vesicles is modulated by cholesterol: a property used for membrane targeting.” Eur. Biophys. J. 1997, 25, 201-210.
[88] 林瑞益,“利用胺基酸/胜肽/蛋白質及其與脂質雙層結合之熱力學性質探討經皮輸藥系統之研究”,國立中央大學/化學工程研究所/86年度/博士論文。
[89] Ladokhin A. S., and S. H. White, “Folding of amphipathic α-helices on membranes: energetics of helix formation by melittin.” J. Mol. Biol. 1999, Volume 285, 1363-1369.
[90] Drake A. F. and R. C. Hider, “The structure of melittin in lipid bilayermembranes.” Biochim. Biophys. Acta. 1979, 555:371–373.
[91] Lauterwein J., C. Bösch, L. R. Brown, K. Wüthrich, “Physicochemical studies of the protein-lipid interactions in melittin-containing micelles.” Biochim. Biophys. Acta. 1979, 556:244–264.
[92] Lavialle F., R. G. Adams, I. W. Levin, “Infrared spectroscopic studyof the secondary structure of melittin in water, 2-chloroethanol,and phospholipid bilayer dispersions.” Biochemistry 1982, 21:2305–2312.
[93] 劉得任,“微卡計於液膜交互作用力量測之應用--微脂粒系統穩定度之探討”,國立中央大學/化學工程研究所/88年度/博士論文。
[94] 蔡莉敏,“聚氧乙烯山梨醣甘型界面活性劑對微脂粒物理穩定性及包覆物質穿透”, 國立中央大學/化學工程研究所/87年度/碩士論文。
[95] Allende D. and T. J. McIntosh, “Lipopolysaccharides in Bacterial Membranes Act like Cholesterol in Eukaryotic Plasma Membranes in Providing Protection against Melittin-Induced Bilayer Lysis.” Biochemistry 2003, 42, 1101-1108.
[96] Papo N. and Y. Shai, “Exploring Peptide Membrane Interaction Using Surface Plasmon Resonance : Differentiation between Pore Formation versus Membrane Disruption by Lytic Peptides.” Biochemistry 2003, 42, 458-466.
[97] Lundberg P. and l. Langel, “Review A brief introduction to cell-penetrating peptides.” J. Mol. Recognit. 2003, 16: 227–233.
[98] Zasloff M., “Antimicrobial peptides of multicellular organisms.” Nature 2002, 415, 389-395.
[99] McIntosh T. J., A. D. Magid, S. A. Simon, “Cholesterol Modifies the Short-Range Repulsive Interactions between Phosphatidylcholine Membranes. ” Biochemistry 1989, 28, 17-25.
指導教授 陳文逸(Wen-Yih Chen) 審核日期 2004-6-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明