博碩士論文 91324007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:138 、訪客IP:3.144.33.41
姓名 黃俊達(Jiun-Da Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以奈米級ZrO2為塗佈物質改良鋰離子電池LiCoO2陰極材料充放電性能研究
(Zirconia-coated lithium cobalt oxideas a long-cycling cathode for lithium batteries)
相關論文
★ LixNi1-yCoyO2及LiM0.5-yM'yMn1.5O4之合成與電池性能★ 鋅空氣一次電池之自放電與鋅極腐蝕 抑制改善之研究
★ 鋰離子電池陽極碳材料開發★ 鋰離子電池LixNi1-yCoyO2陰極材料之溶膠凝膠法製程研究
★ 鋰離子電池混合金屬氧化物材料之電化學特性分析★ 由天然農作物製備鋰離子電池負極碳材料
★ LiCoO2陰極材料重要製程評估與改質研究★ LiNi0.8Co0.2O2陰極材料製程與改質研究
★ 由花生殼製備鋰離子電池高電容量負極碳材料★ 鋰離子電池層狀結構陰極材料合成與改質研究
★ 以三乙醇氨-蔗糖燃燒法合成LiCoO2製程研究★ 以硝酸銨-環六亞甲基四胺燃燒法合成奈米級LiMn2O4陰極材料製程研究
★ 以複合金屬氧化物為塗佈物質表面處理 鋰離子電池LiCoO2 陰極材料之製程研究★ 鈣鈦礦結構氧化物改質LiCoO2陰極材料之製程與其電池性能研究
★ 鋰離子電池鈷酸鋰陰極材料之表面改質及電池性能研究★ 以天然農作廢棄物製備之碳材合成磷酸亞鐵鋰/碳複合陰極材料
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文採用ZrO2作為塗佈物質,處理由台灣康普化學公司所提供之商用LiCoO2陰極材料,以下簡稱該材料為ComA-LiCoO2。論文探討溶凝膠法(Sol-gel Method)、聚合先驅物法(Polymeric Precursor Method)及機械塗佈熱處理法(Mechano-thermal Method)等三種改質方法,將奈米級ZrO2塗佈於ComA-LiCoO2材料,藉由微細的奈米粉體,包覆於ComA-LiCoO2表面,形成一緻密ZrO2鈍化層,不僅可隔絕陰極材料與電解質液的直接接觸,減緩電容量快速衰退現象,並可穩定結構,以提高陰極材料的工作電壓。
改質ComA-LiCoO2陰極材料,是藉由奈米級ZrO2粒子,於陰極材料表面形成一層緻密鈍化層。以溶凝膠法採用0.3 wt%ZrO2塗佈ComA-LiCoO2陰極材料後,在0.2C-rate充放電速率下,充放電截止電壓分別為4.40至2.75V,可得到初始電容量為172 mAh/g,循環壽命為87次循環為最佳。以聚合先驅物法將0.3wt% ZrO2塗佈ComA-LiCoO2陰極材料後,以相同的測試條件下進行測試,初始放電電容量為168 mAh/g,循環壽命可達93次循環。當採用機械塗佈熱處理法將奈米ZrO2塗佈於ComA-LiCoO2陰極材料後,所得材料之循環壽命為三者之最佳,可達110次循環。經TEM鑑定,以機械塗佈熱處理法所得ZrO2厚度最為均一,同時其BET測試值為三者之最高,另由循環伏安測試可知,經過ZrO2塗佈後材料,電壓介於4.0~4.2V間六方晶相與單斜晶相變換,有效地受到抑制,並同時提升電池之循環壽命。
由上述結果, 藉由ZrO2的處理,的確可在ComA-LiCoO2表面上,形成一ZrO2薄層,以減少材料在充放電時,活性物質與電解質液間之直接接觸,同時穩定材料結構,此舉不僅可延長電池使用之年限,亦可改善鋰離子電池層狀結構陰極材料無法承受更高電壓與快速充放電的問題。
摘要(英) A commercial sample of LiCoO2 was coated with ZrO2 by sol-gel and mechano-thermal processes. The effects of the coating method and the precursor used in the sol-gel coating process were studied. Electron microscopic images of the coated particles revealed the presence of a compact coating over the cathode particles. XRD and ESCA results suggested the formation of substitutional compounds of the composition LixZryCo1–yO2+0.5y on the surface of the cathode. Coating levels of 0.3 and 1.0 wt.% were found to be optimal in terms of cyclability for the materials coated by the sol-gel and mechano-thermal methods, respectively. At these coating levels, the R-factor values, determined from XRD data, were the lowest. The maximum improvements in cyclability registered at a 0.2 C rate were about eight-fold with the sol-gel and mechano-thermal coating methods. Cyclic voltammetric studies showed that the coating led to a suppression of the cycle-limiting phase transitions accompanying the charge-discharge processes.
關鍵字(中) ★ 表面改質
★ LiCoO2
★ ZrO2
關鍵字(英) ★ lithium cobalt oxide
★ surface coating
論文目次 摘要…………………………………………………………………………………………….I
致謝…………………………………………………………………………………………...Ⅱ
目錄…..……………………………………………………………………………………….Ⅲ
圖目錄……………………………………………………………………………………...…Ⅵ
表目錄……………………………………………………………………………………..….X
第一章 緒論……………………………………….…………………………………………01
1.1. 鋰離子電池發展簡介……………………………………………………………….01
1.2. 研究架構…………………………………………………………………………….02
第二章 文獻回顧…………………………………………………………………………….07
2.1. 陰極材料合成方法………………………………………………………………….07
2.1.1. 共沈澱法…………...…………….……………………………………………07
2.1.2. 溶膠凝膠法……………...………………………………….…………………07
2.1.3. 噴霧熱分解法………...…………………………………….…………………08
2.1.4. 微波合成法……………...………………………………….…………………08
2.2 陰極材料表面改質…………………………………………………………………..09
2.2.1. Al2O3表面處理……...…………………………………………...…………….10
2.2.2. Co3O4表面處理……...………………………………………………..……….15
2.2.3. MgO表面處理……..….…………………………….………………………...16
2.2.4. SnO2表面處理……...………………………………….………..…………….19
2.2.5. ZnO表面處理……..………………………………….……………….……....20
2.2.6. ZrO2表面處理………..…………………..…………….……………………...22
第三章 實驗方法…………………………………………..….………………………….….24
3.1. 實驗儀器……………………………………………………………….……………24
3.2. 實驗藥品器材……….………………………………………………………………25
3.3. 實驗步驟……………………………………………………………….……………26
3.3.1 以溶凝膠法利用ZrO2改質商用陰極材料.…………………..………………26
3.3.2. 以聚合先驅物法利用ZrO2改質商用陰極材料…...….…………...……….28
3.3.3 以機械塗佈熱處理法利用奈米級ZrO2晶體改質商用陰極材料……….…30
3.4 材料鑑定分析…………………………………..……………………………………32
3.4.1. X光繞射(XRD)…………………………………………….………………32
3.4.2. 表面積分析(BET) …………………………………………….……………...32
3.4.3. 掃描式電子顯微鏡分析 (SEM) …...………………………….……………..33
3.4.4. 穿透式電子顯微鏡(TEM)…..…………..………………….…………….…33
3.4.5. 化學分析電子能譜儀分析 (ESCA) …...…………………….………………33
3.5材料電化學特性分析………………………………..………………………………..34
3.5.1. 電池性能測試………………………………..……….………………………..34
A. 陰極之極片製作…………………………….………….……………………..34
B. 硬幣型電池組裝………...…………………..………….……………………..34
C. 電池性能測試方法步驟………...…………..………….……………………..34
3.5.2. 慢速循環伏安分析…………………………..………….……………………..36
A. 實驗條件…………………………..………….………...……………………..36
B. CV電極製作……………………..………….………...…………….………..36
3.5.3. 交流阻抗測試……………………..………….………...…………….……….36
第四章 結果與討論………………………………………………………………………….38
4.1. XRD分析…………..…………………………...………….……………………….39
4.2. SEM分析……………….……..………………...………………………………….44
4.3. TEM分析……………………...…………………..………….…………………….48
4.4. BET分析…………………..…………………..……………. …………….………51
4.5. 化學分析電子能譜儀分析…………………………………………...…………….52
4.6. 電池性能評估…………….………………………………...………………………57
A. 濃度變因……………………...…………………………………………..……57
B. 煆燒溫度及煆燒時間變因….……………...…………………….……………63
4.7. 循環伏安法測試………………….……………...…….……………………….…..68
4.8. 交流阻抗法之電化學測試……………………………………………. ………..…72
第五章 結論………………………………………. ………………...….…………………..77
第六章 參考文獻………………………………………. ………………...….……………..79
參考文獻 [01] 李世興, “電池活用手冊”, 全華科技圖書股份有限公司, p.29 (1999).
[02] K. Mizushima, P. C. Jones, P. J. Wiseman and J. B. Goodenough, Mat. Res. Bull., 15, 783 (1980).
[03] H. J. Orman and P. J. Wiseman, Acta. Cryst., 40, 12 (1984).
[04] E. Plichta, M. Salomon, S. Slane, M. Uchiyama, D. Chua, W. B. Ebner and H. W. Lin, J. Power Sources, 21, 25 (1987).
[05] M. G. S. R. Thomas, W. I. F. David, J. B. Goodenough and P. Grover, Mat. Res. Bull., 20, 1137 (1985).
[06] A. Marini, V. Berbernni, V. Massarotti, G. Flor, R. Riccardi and M. Leonini, Solid State Ionics, 32/33, 398 (1989).
[07] J. M. Tarascon and D., Guyomard, J. Electrochem. Soc., 138, 2864 (1991).
[08] J. M. Tarascon and D., Guyomard, Electrochimica Acta, 38, 1221 (1993).
[09] C. Delmas and I. Saadoune, Solid State Ionics, 53, 370 (1992).
[10] J. Kim, P. Fulmer, and A. Manthiram, Material Research Bulletin, 34, 571 (1999).
[11] R. Gover, M. Yonemura , A. Hirano, R. Kanno, Y. Kawamoto, C. Murphy, B. Mitchell and J. W. Richardson Jr., J. Power Sources, 81, 535 (1999).
[12] C. J. Brinker and G. W. Scherer, SOL-GEL SCIENCE-The Physics and Chemistry of Sol-Gel Processing, p.834.
[13] 黃德浩, 碩士論文, “噴霧熱分解中先驅物微粒乾燥品質對產物微粒形狀結構之影響”, 私立元智大學, 中華民國台灣(1999).
[14] H. Yan, X. Huang, Z. Lu, H. Huang, R. Xue, and L. Chen, J. Power Sources, 68, 530 (1997).
[15] Y. I. Jang, B. Huang, H. Wang, D. R. Sadoway, G. Ceder, Y. M. Chiang, H. Liu and H. Tamura, J. Electrochem. Soc., 146, 862 (1999).
[16] J. Cho, Y.J. Kim, B. Park, Chem. Mater., 12, 3788 (2000).
[17] J. Cho, Y.J. Kim, B. Park, J. Electrochem. Soc., 148, A1110 (2001).
[18] L. Liu, Z. Wang, H. Li, L. Chen, and X Huang, Solid State Ionics, 152, 341 (2002).
[19] J. R. Dahn, E. W. Fuller, M. Obrovac, and U. von Sacken, Solid State Ionics, 69, 65 (1994).
[20] Z. Zhand, D. Fouchard, and J. R. Ren, J. Power Sources, 70, 16 (1998).
[21] D. Zhang, B.S. Haran, A. Durairajan, R.E. White, Y. Podrazhansky, B.N. Popov, J. Power Sources, 91, 122 (2000).
[22] J. Cho, T. J. Kim, Y. J. Kim, B. Park, J. Electrochem. Soc., 149, A127 (2002).
[23] C.C. Chang, J. Y. Kim, P. N. Kumta, J. Electrochem. Soc., 147, 1722 (2000).
[24] H. Tukamoto and A. R. West, J. Electrochem. Soc., 144, 3164 (1997).
[25] H. J. Kweon, S. J. Kim, and D. J. Park, J. Power Sources, 88, 255 (2000).
[26] Z. Wang, C. Wu, L. Liu, F. Wu, L. Chen, and X. Huang, J. Electrochem. Soc., 149, A466 (2002).
[27] J. Cho, C.S. Kim, and S.I. Yoo, Electrochem. Solid State Lett., 3, 362 (2000).
[28] Y. K. Sun, K. J. Hong, J. Prakash, and K. Amine, Electrochem. Commun., 4, 344 (2002).
[29] Y. K. Sun, Y. S. Lee, M. Yoshio, and K. Amine, Electrochem. Solid State Lett., 5, A99 (2002).
[30] Y. K. Sun, K. J. Hong, and J. Prakash, J. Electrochem. Soc., 150, A970 (2003).
[31] J. Cho, T.J. Kim, Y.J. Kim, B. Park, Electrochem. Solid State Lett., 4, A159 (2001).
[32] Z. Chen and J.R. Dahn, “Methods to Obtain Excellent Capacity Retention in LiCoO2 Cycled to 4.5V”, Electrochimica Acta, 49, 1079 (2004).
[33] J. N. Reimers, E. Rossen, C. D. Jones, and J. R. Dahn, Solid State Ionics, 61, 335 (1993).
[34] Z. Wang, L. Liu, L. Chen, and X. Huang, Solid State Ionics, 148, 335 (2002).
[35] A. M. Kannan, L. Rabenberg, and A. Manthiram, Electrochem. Solid-State Lett., 6 (1), A16-A18 (2003).
[36] E. Plichita, S. Slane, M. Uchiyama, M. Salomon, D. Chua, W.B. Ebner, H.W. Lin, J. Electrochem. Soc., 136, 1865 (1989).
[37] H. Wang, Y.-I. Jang, B. Huang, D.R. Sadoway, Y.-M. Chiang, J. Electrochem.
Soc., 146, 473(1999).
[38] G.G. Amatucci, J.M. Tarascon, L.C. Klein, Solid State Ionics, 83, 167 (1996).
[39] L.H. van Vlack, Physical Ceramics for Engineers, Addison-Wesley Publishing,
Reading, MA (1964).
[40] K. Dokko, M. Nishizawa, S. Horikoshi, T. Itoh, M. Mohamedi, I. Uchida,
Electrochem. Solid-State Lett. 3 (2000) 125.
[41] Y. J. Kim, T. J. Kim, J. W. Shin, B. Park, and J. Cho, J. Electrochem. Soc., 149, 1337 (2002).
[42] J. Cho, C. Kim, and S. I. Yoo, Electrochem. Solid State Lett., in press.
[43] J. Fan and P.S. Fedkiw, J. Power Sources, 72, 165 (1998).
[44] M. D. Levi, K. Gamolsky, D. Aurbach, U. Heider, and R. Oesten, Electrochemical Act, 45, 1781 (2000).
[45] Y. M. Choi, S. Pyun, J. S. Bae, and S. I. Moon, J. Power Sources, 56, 25 (1995).
[46] J.S. Gnanaraj, V.G. Pol, A. Gedanken, D. Aurbach, Electrochem. Commun., 5, 940 (2003).
指導教授 費定國(Tin-Kuo Fey) 審核日期 2004-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明