博碩士論文 91324013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:18.218.184.214
姓名 周慧婷(Huey-Tyng Chiew)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 錫鎳覆晶接點之電遷移研究
(Effect of Ni and Cu Additive on Electromigration in Sn Solder Joints and Lines)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
★ N-GaN表面之六角錐成長機制及其光學特性分析★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為
★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立
★ 通過水熱和溶劑熱法合成銅奈米晶體之研究★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究
★ 含銅鎳之錫薄膜線之電致遷移研究★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究
★ 電遷移誘發銅墊層消耗動力學之研究★ 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究
★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響★ 覆晶凸塊封裝之兩界面反應交互作用研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文探討兩種不同結構的電遷移研究,一種是覆晶凸塊的結構,另一個是錫微米線中添加不同成分的鎳與銅對之電遷移的影響。這兩個結構通入的電流密度值為104A/cm2。實驗溫度設定為155℃, 180℃與200℃。銲料為Sn.07Ni和Sn3Ni。我們發現這些微量銅添加會以銅原子之型態遷移至銲點介面而與錫原子生成Sn-Cu介金屬化合物。對於錫銲點中參雜微量的鎳,銅原子則會與錫鎳反應生成三元的Ni-Cu-Sn介金屬化合物。而對於純錫銲點,在陰極端的二元Cu-Sn介金屬化合物會因為電子流衝擊而溶入錫銲點中。反之,如前所述,含微量鎳的錫,在電遷移的效應下,三元的Ni-Cu-Sn介金屬化合物發現比二元的Cu-Sn介金屬化合物穩定。此外,我們也發現一個很有趣的現象,在陽極與陰極端,銅極與金屬化合物的界面有很多的孔洞(Kirkendall void)出現。從FIB的剖面分析,我們發現陽極端的孔洞比陰極端的孔洞嚴重。因此,隨著電流流動的方向不同會有兩種不同斷裂模式發生,在陽極端,斷裂模式發生在介金屬化合物與銅金屬墊層之間,在陰極端,另一個模式是發生在介金屬化合物與銲點之間。此外,我們也計算出在電遷移的效應下,Sn0.7Ni合金與Sn3Ni合金的活化能分別為0.85 eV / atom和1.132 eV / atom。Sn3Ni合金的銅消耗比Sn0.7Ni合金及比純錫(Q= 0.68 eV/ atom, 資料來自同學戈鈴)來得慢,主要有兩個原因: 第一個原因是(Cu1-yNiy)6Sn5此三元相有比較慢的生長速率且也是銅擴散的阻障層,除此之外,此(Cu1-yNiy)6Sn5在電遷移效應下也很穩定。第二個原因是從質量守恆定律,銅消耗的量等於銅溶入銲料內與銅與IMC化合物混合的總量。從生長速率的圖(Fig 5.2~5.5),我們知道Sn3Ni合金的IMC化合物的厚度比Sn0.7Ni合金小,所以銅在Sn3Ni合金的消耗量比Sn0.7Ni合金慢。
在錫微米線添加不同銅與鎳含量的電致遷移效應研究中,環境溫度設定為室溫與60℃。我們發現電遷移的速率為Sn0.7Cu>Sn>Sn3Cu>Sn0.7Ni>Sn3Ni。Sn0.7Cu是所有合金裡面為較最嚴重的遷移速率是因為共晶組合之Sn0.7Cu有較高密度的晶界。我們可以發現堆積在陽極端而孔洞發生在陰極端。然而Sn(Ni)銲料比Sn(Cu)銲料可抑制錫的電遷移速率。我們發現由於Sn(Ni)銲料的grain size 很大,接近20μm,所以推論Sn(Ni)的grain boundary path比較少,因此可抑制電遷移。我們也可以藉由因電遷移效應所堆積的體積演算出擴散係數(D)與有效電遷移係數(Z*)的乘積值,DZ*。根據實驗結果,推算出來的DZ*值跟文獻值很接近。
摘要(英) The effect of Ni and Cu additive on electromigration(EM) in Sn solder joints and lines have been studied. Both EM test samples were stressed under the current density of 104 A/cm2. The electromigration behaviors in Sn0.7Ni solder joints were investigated at 155℃, 180℃, 200℃, respectively. We found that the Cu additives were transported to the anode side and formed Cu-Sn intermetallic compound. For Ni doped Sn solder joint, a thin layer of intermetallic compound (IMC) formed at the interface which was identified to be the Ni-Cu-Sn ternary compound phase. Under EM test, we found that for the pure Sn solder, the interfacial Cu-Sn compound layer at the cathode side will dissolve into Sn. However, for the Sn0.7Ni solder joint, remarkablely, we found that the Ni-Cu-Sn ternary compound layer is more stable than the Cu-Sn compound layer under EM test. Another intriguing finding is that a line of voids (Kirkendall voids) occurred at the interface between IMC and Cu pad. From the FIB examination, the Kirkendall voids, which at the anode side is more serious than that at the cathode side. Depending on the direction of electron flow, two cracking failure modes were observed. One is on the anode side, the cracking was occur at the IMC / Cu interface, the other is on the cathode side, the cracking was occur at the IMC / solder. Comparing the activation energy between Sn0.7Ni alloy (Q= 0.85 eV/ atom ) and Sn3Ni alloy (Q= 1.13 eV/ atom ), we know that, under the EM current stressing, the Sn3Ni has the highest activation energy than Sn0.7Ni, therefore the Cu consumption rate of Sn3Ni alloy is the slowest. The reason for Sn3Ni alloy has the slowest Cu dissolution rate than Sn0.7Ni than pure Sn (Q= 0.68 eV/ atom, reference data from Ellen Ge). The reason for the lower Cu consumption rate is mainly due to the formation of (Cu1-yNiy)6Sn5 can induced a lower Cu consumption rate[33]. The first reason is that (Cu1-yNiy)6Sn5 has a lower growth rate and is an effective diffusion barrier under the EM stressing. Otherwise, the (Cu1-yNiy)6Sn5 also is much stable under the EM stressing, as aforementioned. The second reason is that, from the growth kinetic of data for the IMC, as seen the Fig 5.2~5.5, we found that the thickness of IMC of Sn3Ni alloy is much smaller than the thickness of IMC of Sn0.7Ni alloy. Considering the mass balance of Cu, the amount of Cu consumed is equal to the amount of Cu dissolved into the solder, and incorporated with the IMC compounds. The formation IMC thickness of Sn3Ni alloy is less than the IMC thickness of Sn0.7Ni alloy, therefore, the Cu consumption rate in the Sn3Ni alloys is the slowest than in Sn0.7Ni and even in pure Sn under the EM current stressing.
Using solder lines structure, we have studied the electromigration phenomenon on Sn (Cu) alloys and Sn (Ni) alloys lines, which are Sn, Sn0.7Cu, Sn3Cu, Sn0.7Ni, Sn3Ni. Two EM test temperature were at the room temperature and 60℃. The samples were stressed under the current density of 104 A/cm2. Mass accumulation near the anode and void nucleation near the cathode were observed during the current stressing. The electromigration rates of the above alloys were determined by knowing the extrusion where at the anode side. Our results show that the magnitude were Sn0.7Cu>Sn>Sn3Cu>Sn0.7Ni>Sn3Ni. We known that Sn0.7Ni alloy and Sn3Ni alloy shows much higher electromigration resistance than Sn (Cu) alloys. Furthermore, the grain boundary diffusion is known to be the main kinetic path of atomic transport in EM. From the Fig 5.12, we know that the Sn (Ni) alloy has a larger grain size than Sn (Cu) alloy, compare from the Table III, we know that the grain size of Sn (Cu) alloys just 3~10μm, however, the grain size of Sn (Ni) alloy is almost 20μm, it’s means that the Sn (Ni) alloy has the less grain boundary density and the electromigration’s diffusion path is decrease. Therefore, the Sn (Ni) alloys can retard the electromigration than the Sn(Cu) alloys. However, a more detail study is needed to verify this suggestion. Otherwise, we can estimate the accumulation region, the atomic flux driven by the electromigration can be calculated. Then the effective charge number and DZ* value of the different solder alloy lines were obtained. The DZ* values agree with the literature data.
關鍵字(中) ★ 電遷移
★ 錫銅合金
★ 錫鎳合金
★ 無鉛銲料
★ 覆晶接點
關鍵字(英) ★ Sn(Ni)Sn(Cu) solder joints and lines
★ Electromigration
論文目次 Table of Contents Pages
Chinese Abstract……………………………………………… i
Abstract…………………………………………………………… iii
List of Figures…………………………………………………… viii
List of Tables…………………………………………………… xi
CHAPTER 1. Introduction…………………………………………………… 1
CHAPTER 2. Literature Review…………………………………………… 3
2.1 Electromigration……………………………………………………… 3
2.1.1 Introduction of electromigration…………………………… 3
2.1.2 Driving force of electromigration……………………… 4
2.1.3 Measurement of electromigration……………………… 7
2.1.4 Mean-time-to-failure(MTTF) of electromigration………… 9
2.2 Electromigration in SnPb solder stripes, lines and joints… 10
2.2.1 Electromigration in SnPb solder joints………………… 10
2.2.2 Electromigration in SnPb solder stripes………………... 15
2.3 Electromigration failure on flip chip solder joints due to rapid dissolution of copper…………………………………………………… 16
CHAPTER 3. Experiments…………………………………………………… 17
3.1 Pb-free solders preparation……………………………………… 18
3.2 Samples preparation…………………………………………. 19
3.2.1 Solder joints structure preparation…………………… 19
3.2.2 Solder lines structure preparation……………………… 21
CHAPTER 4. Results………………………………………………………… 23
4.1 Electromigration in Sn0.7Ni solder joints…………………… 23
4.2 Electromigration in the solder lines………………………… 32
CHAPTER 5. Discussions…………………………………………………… 42
5.1 Electromigration in Sn0.7Ni solder joints…………………… 42
5.1.1. Cracking mode at different interface………………………… 42
5.1.2. Enhanced growth of IMC……………………………………… 43
5.1.3. The activation energy of Sn0.7Ni and Sn3Ni alloys… 48
5.2 Electromigration in solder lines………………………… 54
5.2.1. The measurement of DZ* value ………………………………… 54
5.2.2. Alloying effect…………………………………………………… 55
CHAPTER 6. Conclusion…………………………………………………… 60
References…………………………………………………………………… 63
List of Figures Pages
Fig.2.1 A sketch of the cross-sectional view of morphology changes after electromigration effect. Figure is taken from reference [7]. 4
Fig.2.2 A schematic picture of the applied force of electromigration… 5
Fig.2.3 A sketch of the diffusion of the shaded Al atom to a neighboring vacancy. (a) before diffusion and (b) halfway during diffusion. Figure is taken from reference [7 ]…………………………………………………… 6
Fig.2.4 The isothermal isotope method for measure DZ* and D. Figure is taken from reference [7]…………………………………………………………………… 8
Fig.2.5 The SEM images of the cross-sectioned solder ball (a) before current stressing, (b) after 70 hrs current stressing, (c) after 324 hrs current stressing. Figure is taken from reference [3]………………………… 11
Fig.2.6 Optical microscopic image of the segregation in eutectic Sn-Pb solder bump. Figure is taken from reference [8]………………………………… 12
Fig.2.7 A Schematic diagram of void propagation along the cathode interface. Figure is taken from reference [9] ………………………………………… 13
Fig.2.8 The SEM images of the void formation and propagation after applying current (a) 38 hrs, (b) 40 hrs, and (c) 43 hrs. Figure is taken from reference [9]………………………………………………………………………… 14
Fig.2.9 (a) A schematic picture of the eutectic Sn-Pb solder thin strip sample. (b) The scanning electron microscopic image of an eutectic Sn-Pb solder stressed by a direct electrical current density of 105 A/cm2 at room temperature for 19 days. Figure is taken from reference [6]…………………………………………………………………………………………… 15
Fig.2.10 Fig 2.10 Microstructure evolution in the No.2 solder, we can find the Cu dissolution after 45minutes. Figure is taken from reference [11 ] 16
Fig.3.1 A flowchart of experiment paragraph…………………… 17
Fig.3.2 A schematic diagram of solder joint preparation………… 20
Fig.3.3 A schematic SEM image of a finished solder joint………… 20
Fig.3.4 A schematic diagram of solder joints preparation……………… 22
Fig.3.5 A schematic SEM image of a finished solder line…………… 22
Fig.4.1 A schematic SEM image of Sn0.7Ni solder at the (a)cathode and (b)anode interface after stressing time of 10hours, 20hours, 30hours, 40hours at temperature of 155℃……………………………………………………………… 25
Fig.4.2 A schematic FIB diagram of Sn0.7Ni solder at the (a)cathode interface and (b)anode interface, respectively……………………………………… 26
Fig.4.3 A schematic SEM images of Sn0.7Ni solder on the (a) cathode interface and (b) anode interface on the temperature 180℃ after stressing time of 10hours, 20hours, and 30hours, respectively……………………………… 28
Fig.4.4 A schematic of Pure Sn SEM image at the (a) cathode interface and (b) anode interface after stressing time of 1hours, 2hours, 3hours, 4hours, respectively.[Reference from Ellen Ge]……………………………………… 30
Fig.4.5 A schematic of Sn0.7Ni solder SEM image at the (a) cathode interface and (b) anode interface after stressing time of 1hours, 2hours, 3hours, 4hours, respectively…………………………………………………………… 31
Fig.4.6 The evolution SEM image of Pure Sn, Sn0.7Cu, and Sn3Cu alloys after stressing time of 689hours.…………………………………………………… 35
Fig.4.7 A schematic diagram of Sn0.7Cu which length of 450 µm, was stressed by the current density of 9 x10 A/cm2 for 297 hours.…………………… 36
Fig.4.8 A schematic diagram of Sn0.7Ni, which length of 450 µm, was stressed by the current density of 9 x10 A/cm2 for 297 hours.…………………… 37
Fig.4.9 A schematic diagram of Sn3Cu solder line which was after stressing time of 209 hours ……………………………………………………………… 38
Fig.4.10 A schematic diagram of Sn3Ni solder line which was after stressing time of 209 hours……………………………………………………………… 39
Fig.4.11 The evolution SEM image of Sn0.7Ni alloys line after stressing time of 62hours……………………………………………………………………… 40
Fig.4.12 The enlarge SEM image of the anode interface of Sn0.7Ni alloys after stressing time of 43hours and 62hours……………………………… 41
Fig.5.1 A schematic diagram of the mechanism of cracking mode at different interface……………………………………………………………………………… 45
Fig.5.2 Plot the IMC thickness vs. current stressing time at the anode interface of the Sn0.7Ni alloy.…………………………………………………… 46
Fig.5.3 Plot the IMC thickness vs. current stressing time at the cathode interface of the Sn0.7Ni alloy.…………………………………………………… 46
Fig.5.4 Plot the IMC thickness vs. current stressing time at the anode interface of the Sn3Ni alloy.…………………………………………………… 47
Fig.5.5 Plot the IMC thickness vs. current stressing time at the cathode interface of the Sn3Ni alloy.…………………………………………………… 47
Fig.5.6 Plot of the squares of the Cu consumed thickness versus time on the annealing case for Sn0.7Ni alloy.………………………………………… 51
Fig.5.7 ln D vs. 1 / kT for the Cu dissolution to determine the activation energy for annealing case for Sn0.7Ni alloy. ……………………………………51
Fig.5.8 Plot the thickness of the Cu consumed versus time on the EM current stressing case for Sn0.7Ni.…………………………………………………… 52
Fig.5.9 ln D vs. 1 / kT for the Cu dissolution to determine the activation energy for EM current stressing case for Sn0.7Ni alloy.…………………… 52
Fig.5.10 Plot the thickness of the Cu consumed versus time on the EM current stressing case for Sn3Ni.…………………………………………………… 53
Fig.5.11 ln D vs. 1 / kT for the Cu dissolution to determine the activation energy for EM current stressing case for Sn3Ni alloy. ………………………53
Fig.5.12 The microstructure of Sn (Ni) alloy. ……………………………… 59
List of Tables Pages
Table.I Comparison of DZ* values between the different alloys. 58
Table.II Comparison of DZ* values with the literature data 58
Table.III Property of Sn (Cu) alloy [14] 59
參考文獻 1.H. Poscmann, Fast Amtlith: Bleifeie Elektronik ab1. Juli 2006, Productronic 11 (2002) 6.
2.1999 International Roadmap for semiconductor Technology, Semiconductor Industry Association, San Jose, CA.
3.T. Y. Lee, K. N. Tu, S. M. Kuo, D. R. Frear, J. Appl. Phys. 89 (6), 3189 (2001).
4.T. Y. Lee, K. N. Tu, J. Appl. Phys. 90 (9), 4502 (2001).
5.C. Y. Liu, C. Chen, K. N. Tu, J. Appl. Phys. 88 (10), 5703 (2001).
6.C. Y. Liu, C. Chen, C. N. Liao, K. N. Tu, Appl. Phys. Lett. 75, 58 (1999).
7.K. N. Tu, J. W. Mayer, and L. C. Feldman, Electronic Thin Film Science: For Electrical Engineers and Materials Scientists, (Pearson Education POD, 1996) p. 355.
8.S. Brandenbery and S. Yeh, in “Surface Mount International Conference and Exposition,” SMI 98 Proceedings, p. 337 (1998).
9.E. C. C. Yeh , W. J. Choi, K. N. Tu, J. Appl. Phys. 94 (9), 5665 (2003).
10.Q. T. Huynh, C. Y. Liu, C. Chen, and K. N. Tu, J. Appl. Phys. 89 (8), 4332 (2001).
11.Y. C. Hu, Y. H. Lin, and C. R. Kao, J. Mater. Res., 18 (11), 1(2003)
12.J.Y. Tsai, Y. C. Hu, C. M. Tsai, and C. R. Kao, J. Electro. Mater., 32 (11), 1203 (2003)
13.K. Zeng, R. Stierman in “TMS annual conference” Charlotte, N.C. (2004)
14.C. C. Lu, S. J. Wang, and C. Y. Liu, J. Electro. Mater., 32 (12), 1515 (2003).
15.H. B. Hungtington, “Electromigration in Metals” in “Diffusion in Solid : Recent Developments” ed. by A. S. Nowick and J. J. Burton, Academic Press, New York, 303 (1979).
16.A. Gangulee and F. M. d’Heurle, Thin Solid Films, 16(2), 227(1973).
17.J. R. Lloyd and J. J. Clement, Appl. Phys. Lett., 69, 2486 (1996).
18.J. van EK, J. P. Dekker, and A. Lodder, Phys. Rev. B, 52 (12), 8794 (1995).
19.C. C. Wei, C. Y. Liu, unpublished paper.
20.T. Y. Lee and K. N. Tu, J. Appl. Phys., 90 (9), 4502 (2001).
21.S. Brandenburg and S. Yeh, Proceedings of Surface Mount International Conference and Exhibition, SMI98, San Jose, CA, Aug. 23-27, 1998 (Edina, MN: SMTA, 1998) p.337
22.W. J. Choi, E.C.C. Yeh and K. N. Tu , J. Appl. Phys. 94, 9 (2003).
23.J. H. Lee, J. H. Park, Y. H. Lee, and Y. S. Kim, J. Mater. Res., 16 (5), 1251 (2001).
24.H. Yeh, C. Basaran, and D. C. Hopkins, “Mechanical Implications of High Current Densities in Flip Chip Solder Joints”, IMPAS Conference, 2004
25.K. L. Lee, C. K. Hu, and K. N. Tu, J. Appl. Phys., 78, 4428 (1995)
26.C. Witt, C. A. Volkert, and E. Arzt, Acta Materializ, 51, 49 (2003)
27.D. A. Porter and K. E. Easterling, Phase Transformation in Metals and Alloys, (Van Nostrand Reinhold, U. K., 1984) p. 56.
28.P. F. Tang, in “Electromigration and Electronic Device Degradation,” edited by A. Christou, (John Wiley & Sons, N.Y., 1993) p. 64.
29.K. S. Kim, T. S. Kim, C. W. Hwang, S. H. Huh, K. Suganuma, and H. Nakajima, in Proceedings of the 11th Micro Electronic Symposium, Japan Institute of Electronics Packaging, p. 255 (2001).
30.T. C. Chang, M. H. Hon, and M. C. Wang, Elect. And Solid-State Lett. 7(2) , J4 (2004)
31.J. R. Lloyd, J. Appl. Phys. 69(11), 7601 (1991).
32.P. F. Tang, in “Electromigration and Electronic Device Degradation,” edited by A. Christou, (John Wiley & Sons, N.Y., 1993) p. 64.
33.C. E. Ho, L. C. Shiau, and C. R. Kao, JEM 31(11), 1264(2002).
指導教授 劉正毓(Cheng-Yi Liu) 審核日期 2004-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明