博碩士論文 91324026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:71 、訪客IP:13.58.220.206
姓名 蔡家銘(Chia-Ming Tsai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 覆晶接點於電子流作用下電遷移及熱遷移之研究
(Study of Electromigration and Thermomigration in Flip-Chip Solder Joints under Electron Flow Stressing)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 球矩陣式電子封裝中鎳與鉛錫合金及鉛鉍錫合金界面反應之研究
★ Sn-3.5Ag無鉛銲料與BGA墊層反應之研究★ 矽鍺半導體材料與鈷矽鍺化合物間相平衡與擴散之探討
★ 58Bi-42Sn無鉛銲料與球矩陣封裝中Au/Ni/Cu墊層界面反應之研究★ 金濃度對球矩陣構裝銲點剪力強度影響之研究
★ 927℃ Nb-Si-Ge與600℃ Cu-Si-Ge兩三元平衡相圖之研究★ 以Lactobacillus reuteri菌發酵glycerol生成reuterin做為生物組織材料天然滅菌劑的探討
★ 錫銅無鉛銲料與Ni基材界面反應之研究★ 電遷移效應對錫微結構影響之探討
★ 先進半導體封裝技術中之金脆效應及其有效抑制方法★ SnAgCu無鉛銲料與BGA之Au/Ni墊層反應之研究
★ Reuterin的發酵生成與化學合成及其在生物組織材料上的應用★ 覆晶封裝中電遷移效應導致之銅溶解現象
★ 一種兼具低消耗速率及抗氧化作用之銲點墊層材料★ 覆晶接點與錫電路之電遷移微結構變化模式研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為了因應未來電子產品的高功能性以及便利性,封裝方式朝高I/O數發
展已為必經之路。於新型態封裝技術中,覆晶(flip-chip)技術佔有極大之技
術優勢,勢必成為未來封裝技術主流,如何增加覆晶接點之可靠度,也成
為大家所關心的議題。當覆晶銲點的直徑由現今之 100 μm 縮小至未來之
50 μm,且通過銲點之電流為0.02安培時,此時通過銲點之電流密度將高達
103 A/cm2,雖然此一電流密度仍小於銅導線或鋁導線內之電流密度(105-106
A/cm2 ),但直徑為 50 μm 之銲點的臨界電流密度(Threshold current density)
約為103 A/cm2,因而在此電流密度下,電遷移效應已會對銲點的可靠度造
成影響。因此,電遷移現象對於覆晶銲點可靠度之影響值得深入探討。
本研究利用即時(in-situ)金像觀察之方法,發現覆晶銲點於電子流作用
下,因驅動力之不同,有兩種擴散機制存在於銲錫球內部。第一種為電遷
移(electromigration)擴散機制,其驅動力為電子流撞擊銲錫原子造成原子遷
移,其原子擴散方向與電子流方向相同。第二種為晶格擴散(lattice diffusion)
機制,其驅動力為空孔濃度梯度(vacancy concentration gradient),此機制中,
原子是由低電流密度之自由表面往高電流密度之電流聚集區域(current
crowding region)之方向擴散。
本研究亦探討覆晶接點在通電過程中,因電子流撞擊所導致銲錫原子之
電遷移現象以及因銲錫球內之溫度梯度所造成銲錫原子之熱遷移現象。當電子流造成之驅動力與溫度梯度造成之驅動力方向相同時,因兩種驅動力
作用於相同方向,則此時銲錫原子之遷移量較為顯著。反之,當電子流造
成之驅動力與溫度梯度所造成之驅動力方向相反時,因兩種驅動力作用於
相反方向,則此時銲錫原子之遷移量幾乎為零。此外,在考慮熱遷移對於
銲錫原子於通電過程中之飄移速率(drift velocity)之影響後,得到共晶
Sn37Pb銲料之DZ*值約為-3.4× 10-10 cm2/s。Z*值約為-34。
本論文最後提出一種新的覆晶銲點於通電過程中之失效機制。此機制
為:因電遷移之發生導致銲錫球之局部熔融(local melting)。覆晶銲點在施
以電流下,因電遷移效應,於銲錫球之電流聚集區域(current crowding region)
率先生成一缺陷。此缺陷隨著通電時間增加而成長,進而減少了銲錫球與
UBM(under bump metallization)之接觸面積。UBM與銲錫球局部接觸面積的
減少導致銲錫球局部電阻的升高及散熱量之減少。伴隨著焦耳熱(Joule
heating)效應之影響,局部電阻的升高會使得局部溫度因此而上升。溫度的
上升進而加速了原子之電遷移速率、缺陷生長、銲錫球與UBM之接觸面積
減小及電阻再度升高,在此惡性循環之下,直至溫度到達銲錫球熔點,最
後,局部熔融現象因而發生。銲錫球之局部熔融現象一旦發生,覆晶銲點
隨即因銲錫球完全融化而失效。
摘要(英) The flip chip technology has been the dominating packaging solution for
high performance chips and will remain so in the foreseeable future due to its
shorter electrical connection length between the chip and substrate. As the chip
complexity increases, the I/O density on each chip also increases. To
accommodate the continuing rise of the I/O density, the diameter of the flip chip
solder joints must shrink. At present, the diameter of a solder joint is about 100
μm, and it will be reduced to 50 μm soon. It means that the average current
density in such a 50 μm joint is about 103 A/cm2 when a 0.02 A current is
applied. Electromigration in flip-chip solder joints has become a serious
reliability concern when the current density reaches the 103 A/cm2 level, which
is about two orders of magnitude smaller than that in Al and Cu interconnects.
The reason for this lower threshold current density to cause electromigration in
solders has been pointed out to be the combination of several factors in the
“critical product” of electromigration, including the higher resistivity, the
smaller Young’s modulus, and the larger effective charge of solders. This lower
threshold makes electromigration in solders now one of the major reliability
threats to microelectronic devices.
This investigation studies how electron flow distribution and vacancy
concentration gradient affect the diffusion of solder atoms in a flip-chip solder
joint under current stress. The migration of materials was traced by monitoring
the positions of 21 Pb grains of the eutectic PbSn solder joint. Experimental
results indicate that the displacements of the Pb grains were not uniform along
in the electron flow direction. Additionally, certain Pb grains exhibited lateral
displacements. The non-uniform material migration is attributable to the combined effect of electromigration and the vacancy concentration gradient,
which was caused by electromigration.
The combined effects of electromigration and thermomigration on material
migration were also examined in this study. When the direction of electron flow
is the same with temperature gradient, more solder atoms migrate. When the
direction of electron flow is opposite with temperature gradient, less solder
atoms migrate. Considering the effect of thermomigration in solder bump, the
displacements of the Pb grains were measured, and the DZ* value of Sn in
eutectic SnPb solder estimated to be -3.4×10-10 cm2/s. The calculated Z* value is
about -34.
This study also reported that the solder joints failed by local melting of
PbSn eutectic solder bump. The local melting occurred due to a sequence of
events induced by the microstructure changes of the flip chip solder joint. The
formation of a depression in current crowding region of solder joint induced a
local electrical resistance increased. The rising local resistance resulted in a
larger Joule heating, which, in turn, raised the local temperature. When the local
temperature rose above the eutectic temperature of the PbSn solder, the solder
joint melted and consequently failed. This result also shows that several points
need to be considered when we face the issues of electromigration on reliability
of flip chip solder joints. Firstly, the geometry of flip solder joints should be
designed to avoid the formation of current crowding region in solder bump.
Secondly, in order to resist the microstructure change, the higher mechanical
intensity solder need be chose. Thirdly, increasing heat dissipation of solder joint
under current stressing or choosing the solder which has higher melting point in
order to prevent the melting phenomenon occurred.
關鍵字(中) ★ 覆晶封裝
★ 電遷移
★ 熱遷移
★ 銲料
關鍵字(英) ★ electromigration
★ solder
★ thermomigration
★ flip-chip
★ local melting
論文目次 Table of contents
中文摘要.............................................................................................................Ⅰ
Abstract.............................................................................................................Ⅲ
致謝.....................................................................................................................Ⅴ
Table of contents.................................................................................................Ⅵ
List of Figures..................................................................................................Ⅸ
List of Tables...................................................................................................ⅩⅣ
Chapter 1
Introduction..................................................................1
1.1 Electromigration Physics..................................................1
1.2 Relationship between Diffusion Mechanism and Electromigration.............3
1.3 Threshold Product of Materials............................................6
1.4 Current Crowding.........................................................22
1.5 Joule Heating and Temperature Coefficient Resistivity....................26
1.6 Electromigration in Flip-Chip Solder Joints..............................28
1.6.1 Current density and heat flux distribution in flip-chip solder
joints under current stressing......................................30
1.6.2 Effect of current crowding resulted in the asymmetrical UBM
consumption in flip-chip solder joints..............................33
1.6.3 Effect of current crowding on void formation-and-propagation at
IMCs/UBM interface in flip-chip solder joints.......................37
1.7 Thermomigration in Flip-Chip Solder Joints...............................41
1.8 Motivation of This Study.................................................45
Chapter 2
Experiments..................................................................47
2.1 Samples Preparation......................................................47
2.2 In-situ Observation of Microstructural Evolution in Flip-Chip Solder
Joints under Current Stressing...........................................47
2.3 Measuring the Evolution of Temperature and Resistance of Flip-Chip
Solder Joints during Current stressing...................................52
2.4 Finite-Element Simulation of Current Density Magnitude of Flip-Chip Solder
Joints under Current Stressing...........................................53
2.5 Finite-Element Simulation of Temperature Distribution of Flip-Chip Solder
Joints under Current Stressing...........................................54
Chapter 3
Results and Discussion.......................................................57
3.1 Effect of Electromigration in Flip-Chip Solder Joints under Current
Stressing ...............................................................57
3.1.1 Finite-element simulation of current density distribution in flip-
chip solder joints under current stressing.........................57
3.1.2 In-situ observation of microstructural evolution in flip-chip solder
joints under current stressing.........................................60
3.1.3 In-situ observation of material migration in flip-chip solder joints
under current stressing................................................63
3.1.4 Analysis of motion of Pb grains in No. B solder bump...................66
3.2 Effect of Thermomigration in Flip-Chip Solder Joints under Current
Stressing ...............................................................72
3.2.1 Thermomigration in No. C solder bump...............................72
3.2.2 Analysis of motion of Pb grains in No. C solder bump...................76
3.2.3 The combined effect of electromigration and thermomigration in No. B
bump under current stressing...........................................81
3.2.4 The combined effect of electromigration and thermomigration in No. A
bump under current stressing...........................................84
3.2.5 The comparison of the driving force and the mean drift velocity of
material migration in No. A, No. B, and No. C solder joints............86
3.3 Local Melting Induced by Electromigration in Flip-Chip Solder Joints.....89
3.4 Electromigration in Molten Solder .......................................99
Chapter 4
Conclusions.................................................................106
Chapter 5
Future work........................................................................107
Reference...................................................................108
參考文獻 Reference
[AIN] N. G. Ainslie, F. M. D’Heurle, and O. C. Wells, Appl. Phys. Lett.,
20, p. 173 (1972).
[ALA] M.O. Alam, B.Y. Wu, Y.C. Chan, and K.N. Tu, Acta Mater., 54, p. 613
(2005).
[BAS] J. Bass, Phil. Mag., 15, p. 717 (1967).
[BED] W. G. Beder, Welding Research Supplement, p. 551 (1969).
[BLA1] J. R. Black, IEEE T. Electron Dev., ED-16, p. 338 (1969).
[BLA2] J. R. Black, Proc. 1967 Ann. Symp. on Reliability Physics, IEEE Cat. 7-
15C58 (1967).
[BLE1] I. A. Blech and C. Herring, Appl. Phys. Lett., 29, p. 131 (1976).
[BLE2] I. A. Blech, J. Appl. Phys., 47, p. 1203 (1976).
[BRA] E.A. Brandes, Smithells Metals Reference Book, 6th ed., p. 16-2
(Butterworths, London, 1983)
[CHO] W. J. Choi, E. C. C. Yeh, and K. N. Tu, J. Appl. Phys., 94, p. 5665
(2003).
[CHU] Y. C. Chuang and C. Y. Liu, Appl. Phys. Lett., 88, 174105 (2006).
[CHE] S. W. Chen, C. M. Chen, and W. C. Liu, J. Electron. Mater., 27, p.
1193 (1998).
[GAN] H. Gan and K. N. Tu, J. Appl. Phys. 97, 063514 (2005).
[GUR] G. J. Van Gurp, P. J. De Waard, and F. J. Du Chatenier, J. Appl.
Phys., 58, 728 (1985).
[GUP] Diffusion Phenomena in Thin Films and Microelectronic Materials,
edited by D.Gupa and P. S. Ho (Noyes, Park Ridge, NJ, 1988).
[GUT] M. C. Gutzwiller, in Atomic and Electronic Structure of Metals, edited
by J. J. Gilman and W. A. Tiller, American Society for Metals, Metals
Park, OH, 1966, Chap. 12.
[HAL] Halliday, D. and Resnick, R., Fundamentals of Physics. New York: John
Wiley & Sons, (1974).
[HSU1] Y. C. Hsu, C. K. Chou, P. C. Liu, C. Chen, D. J. Yao, T. Chou, and K.
N. Tu, J. Appl. Phys., 98, 033523 (2005).
[HSU2] Y. C. Hsu, T. L. Shao, C. J. Yang, and C. Chen, J. Electron. Mater.
32, 1222 (2003).
[HU1] C. K. HU, L. Gignac, S. G. Malhotra, R. Rosenberg, and S. Boettcher,
Appl. Phys. Lett., 78, p.904 (2001).
[HU2] Y. C. Hu, Y. H. Lin, C. R. Kao, and K. N. Tu, J. Mater. Res., 18,
p.2544 (2003)
[HUA] A. T. Huang, A. M. Gusak, K. N. Tu and Y. S. Lai, Appl. Phys. Lett.,
88,141911 (2006).
[HUN] D. R. Campbell and H. B. Huntington, Phys. Rev., 179, p.601 (1969).
[HUY] Q. T. Huynh, C. Y. Liu, C. Chen, and K. N. Tu, J. Appl. Phys., 89,
p.4332 (2001).
[JOH] R. A. Johns and D. A. Blackburn, Thin Solid Films, 25, p. 291 (1975).
[KWO1] T. Kwok, T. Nguyen, P. Ho, and S. Yip, Proceedings of the 25th IEEE
International Reliability Physics Symposium, San Diego, California,
April 7-9, p.130 (1987).
[KWO2] T. Kwok, T. Nguyen, P. Ho, and S. Yip, Proceedings of the 5th IEEE
International VLSI Multilevel Interconnection Conference, Santa Clara,
California, June 13-14, p. 252 (1988).
[LEE1] K. L. Lee, C. K. Hu, and K. N. Tu, J. Appl. Phys., 78, p. 4428 (1995).
[LEE2] T. Y. T. Lee, T. Y. Lee, and K. N. Tu, IEEE Electronic Components and
Technology Conference (2001).
[LIN1] Y. C. Hsu, T. L. Shao, C. J. Yang, and C. Chen, J. Electron. Mater.
32, p. 1222 (2003).
[LIN2] Y. H. Lin, C. M. Tsai, Y. C. Hu, Y. L. Lin, J. Y. Tsai, and C. R. Kao,
Mater. Sci. Forum, 475-479, p.2655 (2005).
[LIN3] Y. H. Lin, Y. C. Hu, C. M. Tsai, C. R. Kao, and K. N. Tu, Acta Mate.,
53, p. 2029 (2005).
[LLO1] J. R. Lloyd, J. Phys. D: Appl. Phys. Lett., 32 (1999).
[LLO2] J. R. Lloyd, Appl. Phys., 79, p. 1061 (2000).
[LUD] C. Ludwig, Sitzungsber. Akad. Wiss. Wien, Math.-Naturw. Kl. 20, p.
539 (1856).
[NAH1] J. W. Nah, K. W. Paik, J. O. Suh, and K. N. Tu, J. Appl. Phys., 94,
p. 7560 (2003).
[OKA] H. Okabayashi, H. Kitamura, M. Komatsu, and H. Mori, AIP Conf. Proc.
373, p. 214 (1996).
[PEN] R. V. Penney, J. Phys. Chem. Solids, 25, p.335 (1964).
[RAH] A. Rahn, The Basics of Soldering (John wiely & Sons, New York, 1993),
p. 28.
[ROU] W. Roush and J. Jaspal, Proceedings of the Electron. Compon. 32nd
Conference, San Diego, CA, p. 342, (1982).
[SIN] S. Shingubara, T. Osaka, S. Abdeslam, H. Sakue, and T. Takahagi, AIP
Conf. Proc. 418, p. 159 (1998).
[SHE] P. G. Shewmon, Diffusion in Solids, 2nd ed. (The Minerals, Metals and
Materials Society, Warrendale, PA, 1989).
[SOR] C. Soret, Arch. Sci. Phys. Nat., Geneve 3, p. 48 (1879).
[SU] H. W. Su, Mater’s thesis, National Central University, (2005).
[SUN] P. H. Sun and M. Ohring, J. Appl. Phys., 47, p.478 (1976).
[TRA] J. T. Trattles, A. G. O’Neill, and B. C. Wecrow, IEEE Trans Electron
Devices 40, 1344 (1993).
[TSA] C. M. Tsai, W. C. Luo, C. W. Chang, Y. C. Shieh, and C. R. Kao, J.
Electron. Mater., 33, p.1424, (2004).
[TU1] K. N. Tu, J. Appl. Phys., 94, p. 5451 (2003).
[TU2] K. N. Tu, Phys. Rev. B, 45, p.1409 (1992).
[TU3] K. N. Tu, C. C. Yeh, C. Y. Liu, and Chih Chen, Appl. Phys. Lett., 76,
p. 988 (1976).
[TU4] K. N. Tu and R. Rosenberg, Jpn. J. Appl. Phys. Part 1, 44, p. 633
(1974).
[TU5] K. N. Tu and R. D. Thompson, Acta Metall. 30, p. 947 (1982)
[TUR] D. Turnbull, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic, New York, 1956), Vol. 3.
[WAS] R. J. Klein Wassink, Soldering in Electronics (Electrochemical
Society, New York), p.166, (1989).
[WU] A. T. Wu, A. M. Gusak, K. N. Tu, and C. R. Kao, Appl. Phys. Lett.,
86, 241902, (2005)
[YE] H. Ye, C. Basaran, and D. Hopkins, Appl. Phys. Lett., 86, 241902,
(2005).
[YEH] Everett. C. C. Yeh, W. J. Choi, K. N. Tu, Peter Elenius, and Haluk
Balkan, Appl. Phys. Lett., 80, p. 580 (2006).
[YU] H. C. Yu, S. H. Liu, and Chih Chen, J. Appl. Phys., 98, 013540 (2005).
[ZHA] Lingyun Zhang, Shengguan, Joanne Huang, K. N. Tu, Stephen Gee and
LuuNguyen, Appl. Phys. Lett., 88, 012106 (2006).
指導教授 高振宏(C. R. Kao) 審核日期 2006-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明