博碩士論文 91324033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:54.172.234.236
姓名 郭欣怡(Hsin-Yi Kuo)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 非晶態奈米鐵之製備與催化性質研究
(The Preparation and Catalytic Properties of Amorphous Nanosized Iron.)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 奈米含銀二氧化鈦光觸媒之製備與應用★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究
★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用★ 非晶態奈米鎳的製備及其在對氯硝基苯氫化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 中文摘要
奈米非晶態材料結合了非晶結構與奈米尺寸的優點,它們含有較多表面原子及高度配位不飽和位置。且奈米非晶合金粒子具有特殊的等方向性結構與物化性質,因此具有特殊的性質。本研究以化學還原法,改變各種製備條件,製備一系列的Fe-P-B、Fe-P與Fe-B奈米非晶合金觸媒。觸媒的製備是以0.1M FeCl2、FeCl3和Fe(OAc)2為先驅鹽類,混和次磷酸鈉水溶液(1 M)或將硼氫化鈉水溶液(1 M)緩慢的加入金屬鹽水溶液中,並在溫度為5℃下以超音波震盪,此時即有黑色顆粒狀的Fe-P-B觸媒沈澱。所製備而成的Fe-B、Fe-P與Fe-P-B奈米非晶合金,以N2 sorption、ICP-AES、XRD、DSC、TEM和XPS等儀器鑑定其物理與表面性質。觸媒氫化活性測試,以乙醇脫氫做為測試反應;探討Fe-B、Fe-P與Fe-P-B奈米非晶合金觸媒間之催化性質的差異。結果顯示,不同的製備條件,會影響硼、磷與鐵的結合比例;進而引起其表面積、非晶結構與脫氫活性等觸媒性質的變化。在Fe-B、Fe-P與Fe-P-B奈米材料上其表面組成與整體組成相近。製備Fe-B、Fe-P與Fe-P-B材料,如製備溶劑由水改用50%的乙醇或50%異丙醇,則觸媒表面積會明顯地減少。在製備過程中,鐵鹽的來源也會影響表面積的大小;製備Fe-P-B和Fe-P材料,若鐵鹽由FeCl2改用FeCl3或Fe(OAc)2則觸媒表面積會明顯地減少;但在Fe-B材料製備上,鐵鹽的來源對表面積的影響不明顯。X-光繞射分析顯示所製備的Fe-B、Fe-P與Fe-P-B材料,均是長程無序的非晶結構。Fe-P與Fe-B觸媒的熱穩定性高於Fe-P-B觸媒。TEM的結果顯示,大部分的Fe-B、Fe-P與Fe-P-B粉末,粒徑在10~30 nm之間。然而若Fe-B、Fe-P與Fe-P-B材料,製備過程中改用Fe(OAc)2為起始原料,溶劑為IPA/H2O,則具有最大粒徑在60~150 nm之間。如果製備Fe-B、Fe-P與Fe-P-B材料,製備過程中用FeCl2為起始原料,溶劑為EtOH/H2O,則可得到均勻分佈的粒徑,粒徑大小在10~30 nm之間。觸媒表面暴露於空氣中,易被氧化。由XPS觀察得知,鐵的鹽類對於產物性質有極大影響,以FeCl3為起始原料可製備出金屬鐵,而FeCl2和Fe(OAc)2則較難得到金屬鐵。
觸媒每單位表面積的活性在乙醇的脫氫反應中,其比活性大小次序明顯不同。在所有的Fe-B觸媒中,以每單位觸媒重量的活性以Fe72.8B27.2為最大;而每單位觸媒表面積的活性也以Fe72.8B27.2最大。在Fe-B觸媒中,影響它的活性的主要原因可能是B的含量較少。在所有的Fe-P觸媒中,以每單位觸媒重量的活性以Fe82.6P17.4為最大;而每單位觸媒表面積的活性以Fe89.1P10.9最大。在Fe-P觸媒中,影響觸媒每單位重量的活性的主要原因可能是表面積較大;而影響觸媒每單位表面積的活性的主要原因可能是P的含量較少。在所有的Fe-P-B觸媒中,以每單位觸媒重量的活性以Fe82.4P1.1B16.5最大;而每單位觸媒表面積的活性以Fe78.6P8.8B12.6最大。在Fe-P-B觸媒中,影響它的活性的主要原因可能是B和P要具一定的含量所影響。在不同製備方法中,Fe-B、Fe-P與Fe-P-B奈米材料顯示不同的催化性質。
摘要(英) ABSTRACT
The nanomaterials, combining the features of amorphous and nanometer powers, have more surface atoms and a higher concentration of coordinately highly unsaturated sites. Nanometer amorphous alloy powders have attracted extensive attention due to their unique isotropic structural and chemical properties. A series of ultrafine Fe-B, Fe-P and Fe-P-B amorphous alloy catalysts with various methods were prepared by a chemical reduction method. A series of ultrafine Fe-B, Fe-P and Fe-P-B samples were prepared by mixing aqueous solutions of iron salt (0.1 M), sodium hypophosphite (1 M) and/or sodium borohydride (1 M) at 5℃ under ultrasonic agitation. The solutions of FeCl3 (1000 ml, 0.1 M) and sodium hypophosphite (300 ml, 1 M) were first mixed and the solution of sodium borohydride (300 ml, 1 M) was then added dropwise into the mixture to prepared Fe-P-B materials. Similar method was used to synthesize Fe-P and Fe-B samples.The catalysts were characterized with respect to ICP-AES, X-ray diffraction, N2 sorption, DSC, TEM and XPS. Dehydrogenation of ethanol was chosen as the test reactions to the probe catalytic behaviors and to allow comparisons among these catalysts. The results concluded that the different preparation conditions significantly affected the concentration of boron and phosphorus bounded to the iron metal, resulting in the change of surface area, amorphous structure and dehydrogenation properties of the catalysts. The surface compositions were similar to the bulk compositions for Fe-B, Fe-P and Fe-P-B materials. If the solvent H2O was replaced with ethanol or isopropanol in H2O during preparation, the surface area significantly decreased for the Fe-B, Fe-P and Fe-P-B materials. The source of iron salt had significant effect on the surface area of materials. The Fe-P-B and Fe-P materials prepared with FeCl2 had higher surface areas than those of FeCl3 and Fe(OAc)2. In contrast, the Fe-B materials did not show any change. The XRD patterns of the as-synthesized Fe-B, Fe-P and Fe-P-B materials reveal an amorphous state. The Fe-B and Fe-P catalysts had a higher thermal stability than Fe-P-B. The particles size of Fe-B, Fe-P and Fe-P-B were in the range of 10 and 30 nm, whereas the Fe-B, Fe-P and Fe-P-B powders prepared with Fe(OAc)2 using IPA/ H2O as the solvent had the largest particle size in the range of 60 and 150 nm. If the Fe-B, Fe-P and Fe-P-B materials were prepared with Fe(OAc)2 using EtOH/ H2O as the solvent, the materials show narrow-distributed particles size. All the prepared catalysts were easily degraded by gaseous oxygen. The XPS data of Fe-B, Fe-P and Fe-P-B powders revealed that the starting materials of iron salt had significant influence on the metallic state of iron. One can get metallic iron species by using FeCl3 as the starting material. In contrast, the materials prepared with FeCl2 and Fe(OAc)2 did not show any elemental iron species. The catalytic activities of these catalysts were tested by dehydrogenation of ethanol. The activity per gram and the activity per surface area of the catalyst for ethanol dehydrogenation were compared. Fe72.8B27.2, prepared with FeCl3 and H2O, showed the highest activity based on gram and surface area of the catalyst among all the Fe-B catalyst. The high activity of this catalyst can be attributed to both high surface area and high turnover frequency (TOF). The high TOF of this catalyst is possibly due to its low boron content in the catalyst. The specific activity per weight of Fe82.6P17.4, prepared with Fe(OAc)2 and EtOH showed the highest activity among all the Fe-P catalyst. This catalyst had the highest surface area. In contrast, the specific activity per surface area of Fe89.1P10.9, prepared with Fe(OAc)2 and IPA showed the highest activity among all the Fe-P catalyst. The high TOF of this catalyst was possibly due to the low content of phosphorus. The specific activity per game of Fe82.4P1.1B16.5, prepared with FeCl2 and EtOH, showed the highest activity among all the Fe-P-B catalyst. The specific activity per surface area of Fe78.6P8.8B12.6, prepared with Fe(OAc)2 and IPA showed the highest activity among all the Fe-P-B catalyst. Depending on the preparation conditions, the Fe-B, Fe-P and Fe-P-B amorphous catalysts revealed significantly different catalytic properties.
關鍵字(中) ★ 奈米鐵
★ 非晶態
關鍵字(英) ★ Nanosized Iron
★ Amorphous
論文目次 TABLE OF CONTENTS
ABSTRACT……………………………………………………………………Ⅵ
TABLE OF CONTENTS………………………………………………………Ⅰ
LIST OF TABLES…………………………………………………………Ⅲ
LIST OF FIGURES………………………………………………………Ⅳ
Chapter 1. Introduction…………………………………………………1
Chapter 2. Literature review………...………………………………3
2.1 Preparation of amorphous alloy materials……………3
2.2 Fundamental properties of amorphous alloy materials…4
2.3 Dehydrogenation of alcohols……………………………… 10
Chapter 3. Experimental.……………………………………………… 12
3.1 Chemicals ……………………………………………………12
3.2 Catalyst Preparation …………………………………… 12
3.2.1 Fe-B catalysts……………………………………………12
3.2.2 Fe-P catalysts……………………………………………12
3.2.3 Fe-P-B catalysts…………………………………………13
3.3 Catalyst Characterization……………………………… 14
3.3.1 N2 sorption…………………………………………… …14
3.3.2 ICP-AES…………………………………………………… 15
3.3.3 X-ray diffraction……………………………………… 15
3.3.4 Differential scanning calorimeter………………… 15
3.3.5 Transmission electron microscopy……………………15
3.3.6 X-ray photoelectron spectroscopy……………………15
3.4 Reaction Testing……………………………………………16
Chapter 4. Characteristics of Fe-B Materials…………………… 18
4.1 ICP-AES……………………………………………………… 18
4.2 XRD…………………………………………………………… 18
4.2.1 Reproducibility………………………………………… 18
4.2.2 Amorphous structure………………………………………………18
4.2.3 Effect of temperature on the structure of Fe-B catalyst 18
4.3 N2 sorption……………………………………………………20
4.4 DSC………………………………………………………………20
4.5 TEM………………………………………………………………20
4.6 Surface analysis…………………………………………… 24
4.6.1 Surface compositions of the Fe-B catalysts………24
4.6.2 Chemical shifts in the XPS binding energy of the additive
elements…………………………………………………………24
4.7 Catalytic activity……………………………………………… 38
Chapter 5. Characteristics of Fe-P Materials…… ……………………41
5.1 ICP-AES…………………………………………………………… 41
5.2 XRD……………………………………………………………………41
5.2.1 Reproducibility……………………………………………… 41
5.2.2 Amorphous structure………………………………………… 41
5.2.3 Effect of temperature on the structure of Fe-P catalyst………41
5.3 N2 sorption…………………………………………………………43
5.4 TEM………………………………………………………………… 43
5.5 Surface analysis………………………………………………… 47
5.5.1 Surface compositions of the Fe-P catalysts………… 47
5.5.2 Chemical shifts in the XPS binding energy of the additive elements……………………………………………………………47
5.6 Catalytic activity………………………………………………59
Chapter 6. Characteristics of Fe-P-B Materials………………………62
6.1 ICP-AES…………………………………………………………… 62
6.2 XRD……………………………………………………………… 62
6.2.1 Reproducibility………………………………………………62
6.2.2 Amorphous structure…………………………………………62
6.2.3 Effect of temperature on the structure of Fe-P catalyst……62
6.3 N2 sorption………………………………………………………63
6.4 TEM…………………………………………………………………63
6.5 Surface analysis………………………………………………68
6.5.1 Surface compositions of the Fe-P catalysts…………68
6.5.2 Chemical shifts in the XPS binding energy of the additive elements…………………………………………………………68
6.6 Catalytic activity………………………………………………81
Chapter 7. Conclusion……………………………….………………………84
References………………………………………………………………………87
參考文獻 References
Bajjun, L., Lianhai, L., Bingchun, W., Tianxi, C. and Iwatani, K., “Liquid Phase
Selectivity Hydrogenation of Furfural on Raney Nickel Modified by salts of Heteropolyacids
”, Appl. Catal. A: General, 1998, 171, pp. 117.
Barnett, C., “Hydrogenation of Aliphatic Nitriles over Transition Metal Borides”, Ind. Eng.
Chem. Prod. Res. Dev., 1969, 8 (2), pp. 145.
Brown, C. A. and Ahuja, V. K., “Catalytic Hydrogenation. VI. The Reaction of Sodium
Borohydride with Nickel Salts in Ethanol Solution. P-2 Nickel, A Highly Convenient, New,
Selective Hydrogenation Catalyst with Great Sensitivity to Substrate Structure”, J. Org.
Chem., 1973, 38 (12), pp. 2226.
Brown, C. A., “Catalytic Hydrogenation. V. The Reaction of Sodium Borohydride with
Aqueous Nickel Salts. P-1 Nickel Boride, a Convenient, High Active Nickel Hydrogenation
Catalyst”, J. Org. Chem., 1970, 35 (6), pp. 1900.
Burge, H. D. and Collins, D. J., “Intermediates in the Raney Nickel Catalyzed
Hydrogenation of Nitrobenzene to Aniline”, Ind. Eng. Chem. Prod. Res. Dev.,
1980, 19, pp. 389.
Chaudhari, R. V., Jaganathan, R., Kolhe, D. S., Emig, G. and Hofhann, H., “Kinetic
Modelling of a Complex Consecutive Reaction in a Slurry Reactor: Hydrogenation
of Phenyl Acetylene”, Chem. Eng. Sci., 1986, 41 (12), pp. 3073-3081.
Chen, Y., “Chemical Preparation and Characterization of Metal-metalloid Ultrafine
Amorphous Alloy Particles”, Catal. Today, 1998, 44, pp.3-16.
Chen, Y. W. and Kuo, Y. C., “The Pore Structure of Chrominophosphate Catalysts”, Cataly.
Lett., 1992, 13, pp.137-142.
Collins, D. J. and Smith, A. D., “Hydrogenation of Nitrobenzene Over Nickel Boride
Catalyst”, Ind. Eng. Chem. Prod. Res. Dev., 1982, 21, pp.279.
Dai, W. L., Qiao, M. H. and Deng, J. F., “XPS Studies on A Novel Amorphous Ni-Co-W-B
Alloy Powder”, Appl. Surf. Sci., 1997, 120, pp.119-124.
Deng, J. F. and Chen, H. Y., “A Novel Amorphous Ni-W-P Alloy Powder and Its
Hydrogenation Activity”, J. Mateer. Sci. Lett., 1993, 12, pp. 1508.
Deng, J. F., Li, H. and Wang, W., “Progress in Design of New Amorphous Alloy
Catalysts”, Catal. Today, 1999, 51, pp.113-125.
Deng, J., Yang, J., Sheng, S., Chen, H. and Xiong, G., “The Study of Ultrafine Ni-B and
Ni-P Amorphous Alloy Powders as Catalysts”, J. Catal., 1994, 150, pp. 434.
Fukuoka, Y., Nagahara, H. and Konishi, H., “A New Catalyst for Selectivity Partial
Hydrogenation of Benzene”, Cal. Soc. Jpn., 1993, 35, pp.34.
Fan, Y., Hu, Z., Shen, J., Yan, Q. and Chen, Y., “Surface State and Catalytic Activity of
Ultrafine Amorphous NiB Alloy Particles Prepared by Chemical Reduction”, J. Mater.
Sci. Lett, 1993, 12, pp.596-597.
Ganem, B. and Osby, J. O., “Synthetically Useful Reactions with Metal Boride and
Aluminite Catalysts”, Chem. Rev., 1986, 86, pp. 763.
Giner, J. and Rissmann, E., “The Catalytic Activity of Nickel and Nickel Boride for
Formic Acid Decomposition”, J. Catal., 1967, 9, pp.115.
Hu, Z., Fan, Y., Wu, Y., Yan, Q. and Chen, Y., “A Study on Fe-P-B Ultrafine Amorphous
Alloy Particles” J. Magn. Mang. Mater, 1995, 140-144, pp.413-414.
Katsuya, A., Inoue, A. and Masumoto, T., “Production and Properties of Amorphous Alloy
Wires in Fe-B Base System by A Melt Extraction Method”, Mater. Sci. Eng., 1997, A226-
228, pp.104-107.
Koch, C. J. W., Wells, S., Charles, S. W., “Amorphous to Crystalline Transformation of
Ultrafine Fe62B38 Particles”, J. Magn. Magn. Mater., 1989, 81, pp.138.
Lee, S. P. and Chen, Y. W., “Selectivity Hydrogenation of Furfural on Ni-P, Ni-B and
Ni-P-B Ultra Material”, Ind. Chem. Res., 1999, 35, pp. 2548.
Lee, S. P. and Chen, Y. W., “Catalytic Properties of Ni-B and Ni-P Ultrafine Materials”,
J. Chem. Tech. Biotech, 2000, 75, pp.1073-1079.
Li, H., Li, H., Dai, W. and Qiao, M., “Preparation of Ni-B Amorphous Alloys with
Variable Boron Content and Its Correlation to the Hydrogenation Activity”, Appl. Catal.
A: General, 2003, 238, pp.119-130.
Li, H., Wang, W., Chen, H. and Deng, J. F., “Surface Morphology and Electronic State
Characterization of Ni-P Amorphous Alloy Films”, J. Non-Cryst. Solids, 2001, 281,
pp.31-38.
Li, Fang, and Vipulanandan, C., “Development and Preparation of Nanoscale Iron Particles”,
1998.
Linderoth, S. and MØrup, S., “Chemically Prepared Amorphous Fe-B Particles: Influence
of pH on the Composition”, J. Appl. Phys., 1990, 67(9), pp.4472-4473.
Linderoth, S. and MØrup, S., “Amorphous TM1-xBx Alloy Particles by Chemical Reduction
(invited)”, J. Appl. Phys., 1991,69(8), pp.5256-5261.
Lu, Z., Li, D. and Li, J., “Effect of B on the Preparation and Structure of Nanocrystalline
Fe-B Alloys”, J. Magn. Magn. Mater. 2002, 239, pp.502-505.
Maybury, P. C., Mitchell, R. W. and Hawthorne, M. F., “Hydrogen Adducts of Cobalt
and Nickel Boride”, J. Chem. Soc., 1974, D, pp. 534.
Nasu, T., Sakurai, M., Suzuki, K., Koch, C. C., Edwards, A.M. and Sayers, D. E. “EXAFS
Study on Mechanically Alloyed Fe-B Powder Mixtures” J. Non-Cryst. Solids, 1996, 205-
207, pp.527-530.
Nitta, T., Imanaka, T. and Ternish, S., “Hydrogenation Activity and Selectivity of Cobalt
Boride and Cobalt Nickel Binary Catalysts. Bull”, Chem. Soc. Jpn., 1980, 53, pp. 3154.
Okamoto, Y., Nitta, Y., Imanaka, T. and Teranishi, S., “Surface Characterization of
Nickel Boride and Nickel Phosphide Catalysts by Xray Photoelectron Spectroscopy”,
J. Chem. Soc. Faraday Trans. I., 1973, 75, pp. 2027.
Okamoto, Y., Nitta, Y., Imanaka, T. and Teranishi, S., “Surface State, Catalytic Activty
and Selectivity of Nickel Catalysts in Hydrogenation Reactions”, J. Chem. Soc. Faraday
Trans. I., 1980a, 76, pp. 998.
Paul, R., Buisson, P. and Joseph, N., “Catalytic Activity of Nickel Borides”, Ind. Fng.
Chem., 1952, 44, pp. 1006.
Rajadhyaksha, R. A. and Karwa, A. L., “Solvent Effects in Catalytic Hydrogenation”,
Chem. Eng. Sci., 1986, 41 (7), pp. 1765-1770.
Rei, M. H., Sheu, L. L. and Chen, Y. Z., “Nickel Boride Catalysts in Organic Synthesis”,
Appl. Catal., 1986, 23, pp. 281.
Shen, J., Hu, Z., Hsia, Y. and Chen, Y., ‘Investigation of Amorphous Fe82P11B7 Ultrafine
Particles Produced by Chemical Reduction” J. Phys.: Condens. Matter., 1992, 4, pp.6381
-6388.
Shen, J., Hu, Z., Hsia, Y. and Chen, Y., “Fe-P-B Ultrafine Amorphous Particles Produced
by Chemical Reduction”, Appl. Phys. Lett., 1991, 59(20), pp.2510-2511.
Shen, J., Hu, Z., Zhang, Q., Zhang, L. and Chen, Y., “Investigation of Ni-P-B Ultrafine Amorphous Alloy Particles Produced by Chemical Reduction”, J. Appl. Phys, 1992, 71(10), pp.5217-5221.
Shen, J., Spiewak, B. E. and Dumesic, J.A., “Microcalorimetric Studies of CO and H2 Adsorption on Nickel, Nickel-Boride, and Nickel- Phosphide Catalysts”, Langmuir, 1997, 13, pp.2735-2739.
Tu, Y. J., Li, C. and Chen, Y. W., “Effect of Chromium Promoter on Copper Catalysts in Ethanol Dehydrogenation”, J. Chem. Tech. Biotechnol., 1994, 59, pp.141-147.
Tu, Y. J., Li, C. and Chen, Y. W., “Effect of Alkaline-Earth Oxide Additives on Silica-Supported Copper Catalysts in Ethanol Dehydrogenation”, Ind. Eng. Chem. Res., 1998, 37, pp.2618-2622.
Wells, S., Charles, S. W., MØrup, S. and Linderoth, S., “A Study of Fe-B and Fe-Co-B Alloy Particles Produced by Reduction with Borohydride”, J. Phys.: Condens. Matter, 1989, 1, pp.8199-8208.
Wang, W. J., Qiao, M. H., Li, H. and Deng, J. F., “Amorphous NiP/SiO2 Aerogel: Its Preparation, its High Thermal Stability and its during the Selective Hydrogenation of
Cyclopentadiene to Cyclopentene”, Appl. Cataly., 1998, 166, pp. L243-L247.
Wang, W. J., Qiao, M. H., Li, H. X., Dai, W. L. and Deng, J. F., “Study on the deactivation of amorphous NiB/SiO2 catalyst during the selective hydrogenation of cyclopentadiene to cyclopentene”, Appl. Cataly A: General, 1998, 168, pp.151-157.
Wang, P. J. and Chen, Y. W., “Deactivation of Iron Oxide-Iron Phosphate Catalysts in Isopropanol Dehydration”, Appl. Cataly., 1989, 55, pp.181-192.
Yiping, L., Hadjipanayis, G. C., Papaefthymiou, A. and Kostikas, A., “Heat Treatment Effects on Structural and Magnetic Properties of Fine Fe-B Particles”, J. Magn. Magn. Mater, 1996, 164, pp.357-366.
郭清癸, 黃俊傑, 牟中原, “金屬奈米粒子的製造”, 物理雙月刊, 2001, 23卷6期, pp.614-624.
李少白, “鎳-磷-硼納米觸媒之鑑定與催化性質研究”, 國立中央大學化學工程研究所博士學位論文, 1998年.
謝潼穎, “惰性粒子對奈米觸媒在液相氫化反應之影響”, 國立中央大學化學工程研究所碩士學位論文, 2000年.
陳義忠, “對氯硝基苯於硼化鎳觸媒之選擇性氫化反應”,國立中央大學化工研究所碩士論文,1993年.
廖炳傑, “CuB 超細合金觸媒之製備與催化性質探討”, 國立中央大學化學工程研究所博士學位論文, 1999年.
江淑媜, “奈米NiB、CoB 非晶態合金觸媒於檸檬醛選擇氫化反應之研究”, 國立中央大學化工研究所碩士論文,2002年.
指導教授 陳郁文(Yu-Wen Chen) 審核日期 2004-6-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明