博碩士論文 91324034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.138.125.2
姓名 李坤穆(Kun-Mu Li)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 溶膠-凝膠法製備超疏水性薄膜材料
相關論文
★ 快速合成具核殼結構之均ㄧ粒徑次微米球與其表面改質之特性研究★ 高效率染料敏化太陽能電池及製備次模組元件之研究
★ 利用核殼結構次微米球建構具耐溶劑性質及機械性質之光子晶體膜★ 利用次微米球建構具機械性質之光子晶體薄膜
★ 電漿高分子聚合膜對二氧化碳及甲烷氣體之分離性研究★ 同時聚合下製備聚苯乙烯/矽膠高分子混成體
★ 甲基丙烯酸酯系列團聯共聚物為界面活性劑之迷你乳化聚合研究★ 含水溶性藥物之乙基纖維素微膠囊的製備
★ 銅箔基板環氧樹脂含浸液之研究★ 含光敏感單體之甲基丙烯酸酯系列正型光阻之製備
★ 溶膠-凝膠法製備聚甲基丙烯酸甲酯 / 二氧化矽混成體之研究★ 均一粒徑無乳化劑次微米粒子之合成及種子溶脹製備均一粒徑微米級之緻密或交聯結構粒子
★ 溶膠-凝膠法製備環氧樹脂/二氧化矽有機無機混成體★ 溶膠-凝膠法製備相轉移材料微膠囊
★ 親疏水性光阻製備★ 奈米多孔性材料之製備
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用溶膠-凝膠法(sol-gel process)來製備超疏水薄膜材料。分別探討前置物法(precursor)與同時聚合法(in-situ)兩種反應系統對所製備之薄膜材料之影響。 在前置物系統中,將個別種類矽烷、乙醇及水在酸性環境下進行水解-縮合反應後再加入二氧化矽粉體進行混合,以旋轉塗佈方式(spin-coating)塗佈於玻璃基材上,在不同反應溫度及反應時間下進行反應並藉由改變TEOS/矽烷比例來探討表面性質之變化。 在同時聚合系統中,利用乙醇將個別粒徑之SiO2粉體分散後,藉由改變TEOS/矽烷比例與改變矽烷種類、加水在酸性環境下進行水解-縮合反應,以旋轉塗佈方式(spin-coating)塗佈於玻璃基材上,並在不同溫度下進行反應來探討薄膜表面性質之變化。 將實驗所得之薄膜材料進行接觸角(Contact Angle)、掃瞄式電子顯微鏡(SEM)、原子力顯微鏡(AFM)、紫外光/可見光分光光譜儀(UV)等儀器分析,來探討薄膜材料表面之接觸角變化及表面結構與接觸角、硬度、透明度之關係。 由實驗結果得知,以前置物法所製備之超疏水薄膜材料,其接觸角可達158°,藉由TEOS的加入可提升薄膜硬度至3H。但以前置物法製備薄膜材料需兩步驟完成,進而考慮一步驟反應,即所謂同時聚合法。而以同時聚合法所製備之超疏水薄膜材料方面,在以親水性之SiO2-B粉體之反應系統,反應後其接觸角可高達160°,最佳硬度可達6H。最佳配方之接觸角為158°,硬度3H。 透明度方面,利用導入平均為252.1 nm SiO2粉體(SiO2-B)並改變反應液濃度及塗佈轉速,可得接觸角158°,平均穿透度76.5%之高透明度超疏水性薄膜材料。3
關鍵字(中) ★ 溶膠凝膠法
★ 超疏水
★ 接觸角
關鍵字(英) ★ contact angle
★ super hydrophobic
★ sol-gel
論文目次 目錄……………………………………………….Ⅰ
流程圖索引……………………………………….Ⅲ
圖索引…………………………………………….Ⅳ
表索引…………………………………………….Ⅵ
第一章 前言…………………………………………1
1-1 超疏水原理及其機制……………………………2
1-2 超疏水現象數學模式……………………………3
1-3 表面粗糙度製備方式……………………………7
1-4 溶膠凝膠法介紹…………………………………10
1-4-1 pH值對溶膠凝膠法的影響……………………15
1-4-2水含量的多寡對溶膠-凝膠法的影響…………16
1-4-3溶劑的比例對溶膠-凝膠法的影響……………16
1-5 實驗目的…………………………………………20
第二章 實驗……………………………………….…21
2-1 實驗藥品……………………………………..…22
2-2 實驗儀器………………………………………..24
2-3 超疏水性薄膜材料製備…………………………25
2-3-1 前置物製備………………………………..…25
2-3-2 前置物法製備超疏水薄膜材料………………25
2-3-3 同時聚合法製備超疏水薄膜材料…………..28
2-4 超疏水薄膜材料之物性測試……………………30
2-4-1 接觸角測量……………………………….….30
2-4-2 硬度測試………………………………………30
2-4-3 穿透度測試……………………………………30
2-4-4 SEM進行表面微結構分析…………………….30
2-4-5 AFM進行表面微結構分析…………………….31
第三章 結果與討論………………………………….32
3-1 前置物法之製備實驗參數探討…………………33
3-1-1 矽烷種類與TEOS對接觸角之影響………....33
3-1-2 前置物於不同pH值反應對接觸角之影響……34
3-1-3 系統中溶劑含量對接觸角之影響…………..36
3-1-4 系統中水含量對接觸角之影響……………..36
3-1-5不同反應時間與反應溫度對接觸角之影響….39
3-1-6前置物中含不同量之SiO2粉體對接觸角之影響47
3-1-7添加SiO2粉體於不同溫度反應對接觸角與硬度之影響….47
3-1-8 TEOS/KBE-13不同比例對接觸角與硬度之影響..52
3-2同時聚合法之製備實驗參數探討……………………56
3-2-1利用田口品質工程(L9)研究最佳接觸角與硬度配方 (1)….56
3-2-2疏水官能基密度與粗糙度對接觸角及硬度比較…66
3-2-3利用田口品質工程(L9)研究最佳接觸角與硬度配方(2)…68
3-2-4 透明度探討…………………………………….77
3-2-4-1反應液濃度對接觸角及透明度之影響…….77
3-2-4-2轉速對接觸角及透明度之影響…………….77
第四章 結論…………………………………………84
參考文獻……………………………………………..86
IIList of Schemes
Scheme2-1 The process of preparing precursor…26
Scheme 2-2 The sol-gel process of preparing superhydrophobic materials by precursor method...27
Scheme. 2-3 The sol-gel process of preparing superhydrophobic materials by in-situ method…29
IIIList of Figures
Fig.1-1 Micromorphological characteristics of lotus leaf surfaces………4
Fig.1-2 The pristine leaves of the lotus plant have inspired studies into the superhydrophobic mechanism of self-cleaning…………..…..4
Fig.1-3 “Self-cleaning effect” of the roughness of surface………………5
Fig.1-4 The relationship of colors andhydrophobic of the butterfly with the surface texture………5
Fig.1-5 Wetting of solid surfaces according to Young’s equation……8
Fig.1-6 (a)Wenzel’s theory (b)Cassie’s theory………………………8
Fig.1-7 The relationship of Roughness and Contact Angle……………8
Fig.1-8 The hydrolysis and condensation of silane……………………..12
Fig.1-9 The sol-gel process……………………..13
Fig. 1-10 Polymerization behavior of aqueous silica…………………...17
Fig. 1-11 Effects of pH in aqueous silica sol-gel system……………….18
Fig. 1-12 Models of silica growth………………………………………19
Fig. 2-1 The structural formula of Silanes………………………………23
Fig. 3-1 TEOS、EtOH、H2O ternary-phase diagram…………………..38
Fig. 3-2 AFM photographs of films prepared at different reaction temperature for 1hr………45
Fig.3-3 TGA curves of KBE-13 precursor reacted at different temperature for 1hr…………………46
Fig. 3-4 The particle size distribution of SiO2 powder………………….48
Fig. 3-5 SEM photograph of superhydrophobic material’s surface texture by adding different amount of SiO2 powder………….50
Fig. 3-6 The characteristic of water drop on the glass by different kinds of precursor……….51
Fig. 3-7 The influence factor of Contact Angle by Taguchi method….61
Fig. 3-8 The influence factor of Hardness by Taguchi method…………63
Fig. 3-9 SEM photograph of No.I2-5 Surface texture.………………...65
Fig. 3-10 SEM photograph of No.I2-3 Surface texture...……………….65
Fig. 3-11 The influence factor of Contact Angle by Taguchi method…..72
Fig. 3-12 The particle size distribution of A-200……………………….74
Fig. 3-13 The influence factor of Hardness by Taguchi method………..75
Fig. 3-14 SEM、AFM photographs and drop type of dilute 1/2………80
Fig. 3-15 SEM photographs of different concentration reactants in system…………….81
Fig. 3-16 The transparent of different concentration of reactants and different spin coating rate…………………………………….82
Fig. 3-17 Photograph of a droplet on superhydrophobic material………83
List of Tables
Table 1-1 Characteristics of precursors………14
Table 3-1 Preparation conditions and characteristics of thin films prepared by different silanes………………………………….35
Table 3-2 Preparation conditions and characteristics of hydrophobic films by different value of pH ……………………………….37
Table 3-3 Preparation conditionsand characteristics of hydrophobic films by different amount of solvent…………………………40
Table 3-4 Preparation condition and characteristics of hydrophobic films by different amount of H2O…………………………….41
Table 3-5 Preparation conditions(a) and characteristics of films by changing reaction time and reaction temperature…………44
Table3-6 Preparation conditionsand characteristics of superhydrophobic materials by adding varies amount of SiO2 powder………….49
Table 3-7 Preparation conditions and characteristics of superhydrophobic materials in different reaction temperature after spin coating..53
Table 3-8 Preparation conditions and characteristics of superhydrophobic materials by different molar ratio of TEOS/Silane…………...55
Table 3-9 L9 experiment dispose of Quality Engineering……………….59
Table 3-10Preparation conditions and characteristics of superhydrophobic materials by Taguchi method…………………………………60
Table 3-11 The Rank of influence factor of Contact Angle…………….62
Table 3-12 The optimum prescription of Contact Angle………………..62
Table 3-13 The Rank of influence factor of Hardness…………………..64
Table 3-14 The optimum prescription of Hardness……………………..64
Table 3-15 The importance of roughness and hydrophobic function group comparison sheet…67
Table3-16 Preparation conditions and characteristics of superhydrophobic materials by Taguchi method…………………………………71
Table 3-17 The Rank of influence factor of Contact Angle…………….73
Table 3-18 The optimum prescription of Contact Angle………………..73
Table 3-19 The Rank of influence factor of Hardness…………………..76
Table 3-20 The optimum prescription of Hardness……………………..76
Table 3-21 Preparation conditions and characteristics of superhydrophobic materials by different concentration of reactants……………79
參考文獻 1. K. Tsujii, T. Yamamoto, T. Onda, S. Shibuichi, Angew. Chem., 1997, 109, 1042.
2. A. Nakajima, A. Fujishima, K. Hashimoto, T.Watanabe, Adv.Mater. 1999, 11, 1365.
3. M. Morra, E. Occhiello, F. Garbassi, Langmuir 1989 ,5, 872.
4. Y. Kunigi, T. Nonaka, Y.-B. Chong, N. Watanabe, J. Elec- troanal. Chem. 1993, 353, 209. 5. A. Nakajima, K. Abe, K. Hashimoto, T. Watanabe, Thin Solid Films 2000, 376, 140.
6. B.S. Hong, J.H.Han, S.T. Kim, Y.J. Cho, M.S. Park, T. Dolukhanyan, C. Sung, Thin Solid Films 1999, 351, 274.
7.H. Li, X. Wang, Y. Song, Y. Liu, Q. Li, L. Jiang, D. Zhu, Angew. Chem.2001, 113, 1793 .
8. K. Tadanaga, N. Katata, T. Minami, J. Am. Ceram. Soc. 1997, 80, 3213.
9. A. Hozumi, O. Takai, Thin Solid Films 1997, 303 , 222.
10.W. Chen, A. Y. Fadeev, M. C. Hsieh, D. Kner, J. Youngblood,T. J. McCarthy, Langmuir 1999, 15, 3395 .
11.Miwa, M., Fujishima, A., Hashimoto, K.; Watanabe, T. Langmuir 2000, 16 , 5754 . 12.Nakajima, A.; Hashimoto, K.; Watanabe, T. Langmuir 2000, 16,7044 .
13. Barthlott,W., Neinhuis, C. Planta.1997,202,1.
14 Wenzel, R. N. Ind. Eng. Chem.1936, 28, 988. 15.Cassie, A. B. D.; Baxter, Trans. Faraday Soc.1944, 40, 546.
16.S. Shibuichi, T. Onda, N. Satoh, K. Tsujii, J. Phys. Chem. 1996, 100,86,19512.
17. T. Onda, S. Shibuichi, N. Satoh, K. Tsujii, Langmuir 1996, 12 , 2125.
18.H. Li, X. Wang, Y. Song, Y. Liu, Q. Li, L. Jiang, D. Zhu, Angew. Chem.Int. Ed.2001,40, 1743.
19. L. Feng, S. Li, H. Li, J. Zhai, Y. Song, L. Jiang,D. Zhu, Angew. Chem.2002, 114, 1269.
20.L. Feng, S. Li, H. Li, J. Zhai, Y. Song, L. Jiang,D. Zhu, Angew. Chem.Int. Ed. 2002, 41,1221. 21.L. Feng, Y. Song, J. Zhai, B. Liu, J. Xu, L. Jiang, D. Zhu, Angew. Chem.2003, 115, 824.
22.L. Feng, Y. Song, J. Zhai, B. Liu, J. Xu, L. Jiang, D. Zhu, Angew. Chem. Int.Ed.2003,42, 800.
23.L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, D. Zhu, Adv. Mater. 2002, 14, 1857.
24.H. Y. Erbil, A. L. Demirel, Y. Avci, O. Mert, Science 1977, 299,1377.
25.J. Bico, U. Thiele, D. Quere, Colloids Surf. A 2002, 206,41.
26.R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima , A. Kitamura, M. Shimohigoshi, T. Watanabe, Nature 1997, 388,431. 27. Z. Hu, Y. Chen, C.Wang, Y. Zheng, Y. Li, Nature 1998, 393, 149.
28.Wu, J.-J., Liu. S.-C. Adv. Mater.2002,14, 215.
29.Liu. R., Vertegel, A. A., Bohannan, E. W., Sorenson, T. A.; Switzer, J. A.Chem.Mater.13,508.
30.Oner. D.,McCarthy,T.J.Langmuir 2000, 16, 7777. 31.J. P. Youngblood,T. J. McCarthy, Macromolecules 1999.
32, 6800 . 32.J-Y Shiu, C-W Kuo, P. Chen, C-Y Mou, Chemistry of Materials 2004, 87,16, 561.
33.N.J. Shirtcliffe, G. McHale, M. I. Newton, C.C. Perry , Langmuir 2003, 19, 5626.
34. Shibuchi, S., Onda, T., Satoh, N., Tsuji, K., J. Phys.Chem.1996, 100, 19512.
35. Chen,W. et al., Langmuir,1999, 15, 3395. 36.Youngblood,J.P.,McCarthy,T.J,Macromolecules,
1999,32,6800.
37.Wu,Y.,Sugimura, H., Inoue,Y., Takai, Chem.Vap. Depos,2002,8, 47.
38.A. Venkateswara Rao, M. M. Kulkarni, Materials Research Bulletin, 2002, 37, 1667.
39.K. Satoh, H. Nakazumi, J. Sol-Gel Science and Technology, 2003, 27, 327.
40.S. Pilotek, H.K. Schmidt, J. Sol-Gel Science and Technology, 2003, 26, 789.
41.K. Tadanaga, K. Kitamuro, A. Matsuda, T. Minami, J. Sol-Gel Science and Technology, 2003, 26, 705.
42.A. Venkateswara Rao, Manish M. Kulkarni, D.P. Amalnerkar, T. Seth, J. Non-Crystalline Solids, 2003, 330, 187.
43.Lenz, P. Adv. Mater. 1999, 11, 1531 . 44.Izaki, M.; Omi, T.App.Phys.Lett.1996,68, 2439. 45.Swain, P. S., Lipowsky, R. Langmuir 1998,14, 6772.
46.Wolansky,G.,Marmur, A. Langmuir 1998,14, 5292. 47.Gillmor, S. D., Thiel, A. J., Strother, T. C., Smith, L. M.,Lagally,M.G.Langmuir,2000, 16, 7223. 48.Gau,H., Herminghaus,S., Lenz, P., Lipowsky, R.Science 1999,283,46.
49.Whan Cho, Jae, Il Sul, Kyung. Polymer, 2001, 42, 727.
50.G. Yamauchi, J.D. Miller, H. Saito, K. Takai, T. Ueda, H. Takazawa, H. Yamamoto, S. Nishi, Colloids Surf. A 1996, 116, 125.
51.Sun, C.-C.; Mark, J. E. Polymer, 1989,30,104. 52.Wung, C. J.; Pang, Y.; Prasad, P. N.; Karasz, F. E. Polymer,1991, 32, 605.
53.L-Davies, B.; Samoc, M.; Woodruff, M. Chem. Mater. ,1996, 8 ,2586.
54.Motakef, S.; Suratwala, T.; Roncone, R. L.; Boulton, J. M.; Teowee, G.; Neilson, G. F.; Uhlmann, D. R. J. Non-Cryst Solids,1994, 178, 31. 55.Motakef, S.; Suratwala, T.; Roncone, R. L.; Boulton, J. M.; Teowee, G.; Uhlmann, D. R. J. Non-Cryst. Solids, 1994,178 ,37.
56.Yoshida, M.; Prasad, P. N. Appl. Opt. 1996, 35, 1500.
57.Xu, C.; Eldada, L.; Wu, C.; Norwood, R. A.; Shacklette, L.W.; Yardley, J. T.; Wei, Y. Chem. Mater.1996, 8 ,2701.
58.Dave, B. C.; Dunn, B.; Valentine, J. S.; Zink, J. I. Anal. Chem., 1994,66, 1120.
59.Claude, C.; Garetz, B.; Okamoto, Y.; Tripathy, S. Mater. Lett., 1992, 14, 336.
60.詹佳樺, ”溶膠-凝膠法製備聚甲基丙烯酸甲酯/二氧化矽混成體之研究”,國立中央大學化學工程研究所碩士論文(2001)。
61.Schmidt, H. K. Mater. Res. Soc. Symp. Proc. 1984, 32 , 327.
62.Sakka, S.; Kamiya, K. J. Non-Cryst. Solids 1980, 42 , 403.
63.Brinker, C.J.; Scherer, G.W. Sol-Gel Science: the Physics and Chemistry of Sol-Gel Processing, Academic Press, San Diego, 1990.89
指導教授 陳暉(Hui Chen) 審核日期 2004-6-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明