博碩士論文 91324035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.149.243.32
姓名 周開平(Kai-Ping Chou)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 奈米含銀二氧化鈦光觸媒之製備與應用
(Preparation and Application of Ag/TiO2 Photocatalyst)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究
★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用★ 非晶態奈米鎳的製備及其在對氯硝基苯氫化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 數十年來,光觸媒被廣泛地研究,並逐漸應用在環保、能源、殺菌、自我潔淨等方面。自1972年,Fujishma和Honda首次在Nature發表TiO2經照光後會分解水成H2及O2後,越來越多人投入TiO2光催化性質相關的研究,並致力於各種可能的改質方法,以提高TiO2光觸媒的效果。而其中添加金屬改質,即為常見的一種改質方法。本研究主要的目的,是為了去除水中的污染物。由於工業製程中會產生高濃度的廢水,不易處理,且不同產業亦會產生各種不同的廢水組成;因此,我們藉二氧化鈦具光催化的性質,利用其特殊的反應機制,來分解水中的污染物。為了進一步提高二氧化鈦光催化的效果,添加適當金屬加以改質,而本實驗的重點就在於研究加銀 (Ag)的效果,並且以甲烯藍 (Methylene Blue)為標準測試的對象物質,探討不同合成及添加方法對去除效率的影響。實驗大致分為兩大類,其一為不同合成方法製備二氧化鈦,另一為不同添加方法合成含銀二氧化鈦,然後藉由UV照光反應器進行液相光催化反應,搭配分光光度計於特定波長下,每隔固定時間取樣量測吸收值,然後利用所得之數據,來交叉比較分析。基本上主要採用含浸法添加銀,取一定量之AgNO3(s)溶於適量溶劑中,再與定量之TiO2(s)混合攪拌約1小時,將其先於120℃烘乾磨粉,再於250℃煅燒2小時,製得2wt%Ag/TiO2粉末。實驗結果發現,添加銀可提升光催化的效率,且使用不同溶劑,光催化效果亦不同。其中混有乙醇的溶劑效果最顯著,優於混有異丙醇或純水的溶劑。此外,在合成粉體進行反應前,若先充分照射UV光,可進一步提升光催化效率。有趣的是,照光後粉體顏色會改變,其中以純水做溶劑的樣品會從淺灰色變成棕色,而混有乙醇或異丙醇做溶劑的粉體會從淺灰色變成深灰色。若跳過120℃烘乾磨粉步驟,直接由液相升溫到250℃煅燒2小時,則所合成之Ag/TiO2即接近深灰色,其催化效果介於未照光與照光之間。另外,由XRD圖譜可知,不論添加方法為何,微量的銀不會改變既有二氧化鈦之晶相,其Anatase與Rutile比例不會改變。若未經煅燒,只於100℃烘乾製得之粉末,不但不能增進催化效果,甚至會降低光催化性質。由此可知,溫度是一重要因素,可能此時硝酸根尚未去除。通常高溫煅燒會使粒子顆粒變大,若以一般觸媒理論,顆粒變大,接觸表面積減少,反應效率會明顯變差。但實驗觀察得知,雖然煅燒後的Ag/TiO2比TiO2來的粗糙 (離心時明顯不同,於250℃煅燒之粉末較容易分離;而pure P-25 TiO2懸浮性明顯較好,較難分離),但添加極微量的Ag卻可提高光催化效率,由此可知,表面積大小並非影響光催化效率的唯一因素,亦即光觸媒之作用機制與一般觸媒不盡相同。
摘要(英) Many researches on photocatalysis by TiO2 have been investigated for decades after the first report by Fujishma and Honda in 1972. Metal modification has been extensively used to improve the activity of titania. The purpose of this research focused on the decomposition of contaminants in wastewater produced from industrial process. The usage of TiO2 with specific photocatalytic property is a potential way to decompose the pollutants in wastewater. This research emphasized the effect of silver modification and the photocatalytic activity has been tested by decomposition of methylene blue (MB). During pre-test stage, silver modification has shown remarkable performance in deNOx reaction. Ag/TiO2 powders prepared with impregnation method under proper condition could enhance the photocatalytic activity on MB degradation when compared with the bare TiO2. The usage of ethanol as solvent showed the higher activity than those with isopropanol or pure water during preparation. Catalysts prepared with calcinations and without drying showed higher photocatalytic activity than those prepared with calcinations and drying. Pretreatment by UV illumination (at 254 nm) could enhance the photocatalytic activity of Ag/TiO2 catalysts and the color of the catalysts changed. Ag-TiO2 suspension prepared with adding hydrogen peroxide (H2O2) was very active during MB test for both UV and visible light while TiO2 suspension was only active under UV illumination. According to the XRD analysis, silver modification did not change the crystalline phase of the original bare TiO2. In addition, the deposited silver changed from Ag+ or Ag2+ to metallic form (Ag0) after UV illumination. The role of deposited silver metal on titania surface could be explained as either an electrons trapper or enhancement of electrons transfer from catalysts to dissolved molecular oxygen. Negative charging of deposited silver metal results in faster holes transfer from catalysts to adsorbed MB or to water.
關鍵字(中) ★ 含銀二氧化鈦
★ 二氧化鈦
★ 光觸媒
★ 光催化
★ 銀
★ 甲烯藍
關鍵字(英) ★ Ag/TiO2
★ titanium dioxide
★ titania
★ Photocatalyst
★ Photocatalysis
★ silver
★ Methylene Blue
論文目次 Table of Contents
Abstract ------------------------------------------------------------i
Table of Contents -------------------------------------------------iii
List of Figures ----------------------------------------------------vi
List of Tables -----------------------------------------------------ix
Chapter 1 Introduction --------------------------------------------1
Chapter 2 Literature Review ---------------------------------------3
2.1 Band-Gap Photoexcitation --------------------------------------3
2.2 Anatase vs Rutile ---------------------------------------------3
2.3 Mechanism of Photocatalysis -----------------------------------4
2.3.1 Bulk TiO2 -------------------------------------------------4
2.3.2 Surface-modified TiO2 -------------------------------------7
2.3.3 Composite TiO2 -------------------------------------------10
2.4 Applications -------------------------------------------------10
Chapter 3 Experimental -------------------------------------------20
3.1 Chemicals ----------------------------------------------------20
3.2 Pre-test -----------------------------------------------------20
3.2.1 Preparation of TiO2 suspension ---------------------------21
3.2.2 deNOx Reaction -------------------------------------------22
3.3 Synthesis Method ---------------------------------------------26
3.3.1 Synthesis of pure TiO2 -----------------------------------26
3.3.2 Synthesis of Ag/TiO2 -------------------------------------26
3.4 Photocatalysis Studies ---------------------------------------31
3.4.1 Photocatalytic Reactor -----------------------------------31
3.4.2 Light Source ---------------------------------------------31
3.4.3 MB test --------------------------------------------------31
3.5 Characterization ---------------------------------------------32
3.5.1 UV/Visible spectroscopy ----------------------------------32
3.5.2 X-ray Diffraction (XRD) ----------------------------------32
3.5.3 Transmission Electron Microscopy (TEM) -------------------35
3.5.4 X-ray photoelectron spectroscopy (XPS) -------------------35
Chapter 4 Results and Discussion ---------------------------------37
4.1 Pure TiO2 ----------------------------------------------------37
4.1.1 Color ----------------------------------------------------37
4.1.2 MB test --------------------------------------------------37
4.2 Ag-modified TiO2 ---------------------------------------------39
4.2.1 Color ----------------------------------------------------39
4.2.2 MB test --------------------------------------------------39
4.2.3 Effect of Solvent ----------------------------------------41
4.2.4 Effect of Pre-illumination -------------------------------42
4.3 XRD ----------------------------------------------------------46
4.3.1 Pure TiO2 ------------------------------------------------46
4.3.2 Ag/TiO2 --------------------------------------------------46
4.4 TEM ----------------------------------------------------------46
4.5 XPS Analysis -------------------------------------------------50
4.6 Mechanism of photodegradation of MB by Ag/TiO2 catalyst ------53
Chapter 5 Conclusions --------------------------------------------56
References ---------------------------------------------------------58
Appendix -----------------------------------------------------------62
參考文獻 Anpo, M., Shima, T., Kodama, S. and Kubokawa, Y., “Photocatalytic Hydrogenation of Ch3CCH with H2O on Small-Particle TiO2: Size Quantization Effects and Reaction Intermediates”, J. Phys. Chem., 91, 4305-4310 (1987).
Arabatzis, I. M., Stergiopoulos, T., Bernard, M. C., Labou, D., Neophytides, S. G. and Falaras, P., “Silver-modified Titanium Dioxide Thin Films for Efficient Photodegradation of Methyl Orange”, Applied Catalysis B: Environmental, 42, 187-201 (2003).
Boer, K.W., “Survey of semiconductor physics”, Van Nostrand Reinhold, New York, 1990, p 249.
Chen, H. Y., Zahraa, O. and Bouchy, M., “Inhibition of the Adsorption and Photocatalytic Degradation of an Organic Contaminant in an Aqueous Suspension of TiO2 by Inorganic Ions”, Journal of Photochemistry and Photobiology A: Chemistry, 108, 37-44 (1997).
Chen, L.-C. and Chou, T.-C., “Photodecolorization of Methyl Orange Using Silver Ion Modified TiO2 as Photocatalyst”, Ind. Eng. Chem. Res., 33, 1436-1443 (1994).
Diebold, U., “The Surface Science of Titanium Dioxide”, Surface science reports, 48, 53-229 (2003).
Dobosz, A. and Sobczyński, A., “The Influence of Silver Additives on Titania Photoactivity in the Photooxidation of Phenol”, Water Research, 37, 1489-1496 (2003).
Fox, M. A. and Dulay, M. T., “Heterogeneous Photocatalysis”, Chem. Rev., 93, 341-357 (1993).
Fetterolf, M. L., Patel, H. V. and Jennings, J. M., “Adsorption of Methylene Blue and Acid Blue 40 on Titania from Aqueous Solution”, J. Chem. Eng. Data, 48, 831-835 (2003).
Fujishima, A. and Honda, K., “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature, 238, 37-38 (1972).
Fujishima, A., Hashimoto, K. and Watanabe, T., TiO2 Photocatalysis Fundamentals and Applications, BKC Inc., Japan, 1999.
Gerischer, H. and Heller, A., “Photocatalytic Oxidation of Organic Molecules at TiO2 Particles by Sunlight in Aerated Water”, J. Electrochem. Soc.,139(1), 113-118 (1992).
Grätzel, M., “Heterogeneous Photochemical Electron Transfer”, CRC Press: Boca Raton, 1989.
Herrmann, J.-M., Disdier, J. and Pichat, P., “Photocatalytic Deposition of Silver on Powder Titania: Consequences for the Recovery of Silver”, Journal of Catalysis, 113, 72-81 (1988).
Herrmann, J.-M., Tahiri, H., Ait-Ichou Y., Lassaletta, G., González-Elipe, A. R. and Fernández, A., “Characterization and Photocatalytic Activity in Aqueous Medium of TiO2 and Ag-TiO2 Coating on Quartz”, Applied Catalysis B: Environmental, 13, 219-228 (1997).
Hoffmann, M. R., Martin, S. T., Choi, W. and Bahnemann, D. W., “Environmental Applications of Semiconductor Photocatalysis”, Chem. Rev., 95, 69-96 (1995).
Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C. and Herrmann, J.-M., “Photocatalytic Degradation Pathyway of Methylene Blue in Water”, Applied Catalysis B: Environmental, 31, 145-157 (2001).
Hu, Y., Tsai, H.-L. and Huang, C.-L., “Phase Transformation of Precipitated TiO2 Nanoparticles”, Materials Science and Engineering, A344, 209-214 (2003).
Jacobs, J. W. M., Kampers, F. W. H., Rikken, J. M. G. and Bulle-Lieuwma, C. W. T., and Koningsberger, D. C., “Copper Phodeposition on TiO2 Studied with HREM and EXAFS”, J. Electrochem. Soc., 136, 2914-2923 (1989).
Kwok, H. L., Electronic Materials, PWS Publishing Company, 1997, p 103.
Lakshmi, S., Renganathan, R. and Fujita, S., “Study on TiO2-mediated Photocatalytic Degradation of Methylene Blue”, Journal of Photochemistry and Photobiology A: Chemistry, 88, 163-167 (1995).
Li, F.B. and Li, X.Z., “Photocatalytic Properties of Gold/gold ion-modified Titanium Dioxide for Wastewater Treatment”, Applied Catalysis A: General, 228, 15-27 (2002).
Li, F. B. and Li, X. Z., “The Enhancement of Photodegradation Efficiency using Pt-TiO2 Catalyst”, Chemosphere, 48, 1103-1111 (2002).
Linsebigler, A. L., Lu, G., Yates J. T. and Jr., “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results”, Chem. Rev., 95, 735-758 (1995).
Li, X. Z., Li, F. B., Yang, C.L. and Ge, W. K., “Photocatalytic Activity of WOx-TiO2 under Visible Light Irradiation”, Journal of Photochemistry and Photobiology A: Chemistry, 141, 209-217 (2001).
Pichat, P., in: M. Schiavello (Ed.), Photocatalysis and Environment: Trends and Applications, NATO Advanced Study Institute on New Trends and Applications, Kluwer Academic Publishers, Dordrecht; Boston, 1993, pp. 399.
Rhoderick, E. H. and Williams, R. H., “Metal-Semiconductor Contacts, 2nd ed”, Oxford University Press: New York, 1988, p 11.
Sökmen, M. and Özkan, A., “Decolourising Textile Wastewater with Modified Titania: the Effects of Inorganic Anions on the Photocatalysis”, Journal of Photochemistry and Photobiology A: Chemistry, 147, 77-81 (2002).
Vamathevan, V., Tse, H., Amal, R., Low, G. and McEvoy, S., “Effects of Fe3+ and Ag+ Ions on the Photocatalytic Degradation of Sucrose in Water”, Catalysis Today, 68, 201-208 (2001).
Vamathevan, V., Amal, R., Beydoun, D., Low, G. and McEvoy, S., “Photocatalytic Oxidation of Organics in Water using Pure and Silver-modified Titanium Dioxide Particles”, Journal of Photochemistry and Photobiology A: Chemistry, 148, 233-245 (2002).
Wang, C.-M., Heller, A. and Gerischer H., “Palladium Catalysis of O2 Reduction by Electrons Accumulated on Ti O2 Particles during Photoassisted Oxidation of Organic Compounds”, J. Am. Chem. Soc., 114, 5230-5234 (1992).
Wang, C.-Y., Liu, C.-Y., Zheng, X., Chen, J. and Shen, T., “The surface chemistry of hybrid nanometer-sized paeticles I. Photochemical deposition of gold on ultrafine TiO2 particles”, Colloids Surfaces A: Physicochem. And Eng. Aspects, 131, 271-280 (1998).
Xu, N., Shi, Z., Fan, Y., Dong, J., Shi, J. and Hu, M. Z.-C., “Effects of Particle Size of TiO2 on Photocatalytic Degradation of Methylene Blue in Aqueous Suspensions”, Ind. Eng. Chem. Res., 38, 373-379 (1999).
Zhang, T., Oyama, T., Aoshima, A., Hidaka, H., Zhao, J. and Serpone, N., “Photooxidative N-demethylation of Methylene Blue in Aqueous TiO2 Dispersions under UV Irradiation”, Journal of Photochemistry and Photobiology A: Chemistry, 140, 163-172 (2001).
Zhang, Z., Wang, C.-C., Zakaria, R. and Ying, J. Y., “Role of Particles Size in Nanocrystalline TiO2-Based Photocatalysts”, J. Phys. Chem. B, 102, 10871-10878 (1998).
黃嘉宏, 邱獻明, 林有銘, 光觸媒空氣淨化之應用與測試方法技術手冊, 工研院環安中心, 2003.
王升平, 四氯化鈦製作納米二氧化鈦透明結晶膜及其應用, 碩士學位論文, 國立中央大學化學工程研究所, 1999.
盧明憲, 低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液, 碩士學位論文, 國立中央大學化學工程研究所, 2001.
指導教授 陳郁文(Yu-Wen Chen) 審核日期 2004-6-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明