博碩士論文 91324044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.15.206.25
姓名 游振經(Chen-Ching Yu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 於陶瓷纖維紙上合成ZSM-5沸石與聚乙烯觸媒裂解之研究
相關論文
★ 機車觸媒轉化器處理效能提升之研究★ SAPO-34之微波合成與CoAPO﹑CuO/CeO2﹑La1-xSrxCo1-yMnyO3之X光吸收光譜分析
★ 聚苯胺及三氧化鎢互補式電變色元件電變色性質研究★ NO在Perovskite oxide上的分解反應之研究
★ 電化學法合成聚苯胺及其複合材料電變色性質的研究★ 經摻雜之二氧化鈦觸媒膜光分解性質之研究
★ 在Perovskite氧化物上進行CO-NO反應之研究★ 聚苯胺與聚苯乙烯殼核複合材料之研究
★ 導電高分子與聚胺基甲酸酯複合材料之研究★ 在孔道均一的模板內合成聚苯胺奈米管
★ 梳狀聚苯乙烯磺酸與聚苯胺複合材料之合 成與分析★ 在二氧化鈦上進行Salicylic acid可見光 光催化反應的研究
★ 蒙脫土/環氧樹脂、蒙脫土/聚苯胺和聚苯胺管奈米材料之研究★ 二氧化鈦的合成與光催化性質的研究
★ 苯在Au/CeO2與Au/V2O5/CeO2上進行完全氧化反應之研究★ 聚苯胺金屬奈米複合管的合成及鑑定
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要分成兩部分,第一部分是在陶瓷纖維紙上合成ZSM-5沸石;第二部分則是將聚乙烯進行觸媒裂解的研究。
於陶瓷纖維紙上合成ZSM-5沸石的研究中,採用溶液法與乾膠法合成,其中乾膠法又分為直接乾膠法、纖維酸處理後乾膠法與蒸氣合成法。以溶液法合成時,必需經過二次合成才可以獲得良好的覆蓋率,但ZSM-5沸石容易相互堆積。乾膠法研究中,一次合成時的合成溫度160℃,合成時間18~27小時的條件下,可以獲得較佳的晶型及表面積;以一次乾膠合成9小時的產品進行二次合成時,於二次合成時間9小時下,陶瓷纖維表面可以完全的覆蓋ZSM-5沸石;蒸氣合成時,陶瓷纖維紙沾膠後以80℃預熱,合成溫度160℃,蒸氣合成8小時下,晶型及表面積結果皆獲得良好的結果;纖維酸處理後表面變的較為粗糙而提供了成核位置利於ZSM-5生長,於一次乾膠法合成後,纖維表面即可完全覆蓋沸石。
聚乙烯(PE)觸媒裂解研究中,主要目的是將廢塑膠裂解為液態產物。反應方式採用兩階段裂解方式,第一階段以流體化床反應器進行熱裂解,裂解溫度530℃,載氣流速34 L/min,反應時間3小時,裂解所得到的產物導入第二階段固定床反應器進行觸媒裂解程序。選用的觸媒有Y型沸石、無結晶相矽酸鋁、含鋁MCM-41分子篩、ZSM-5沸石(矽鋁比31.7及21.6)及兩種重金屬含量不同的流體化催化裂解觸媒(FCC觸媒)。裂解反應結果中FCC(light)於觸媒床溫度400℃與450℃時,裂解產物全為液體,除了FCC(light)觸媒外,Y型觸媒床400℃時,液化比例為72.22 wt%;500℃時液化比例為54.3 wt%。觸媒床溫度450℃時,FCC(heavy)觸媒液化產率則為60.5 wt%。具有較強酸性的ZSM-5觸媒與高表面積的矽酸鋁、Al-MCM-41皆造成氣態的產率偏高。液體產物中的碳數分佈則隨著觸媒床溫度升高而更集中於C5~C12。BTX含量方面,Y型觸媒裂解產物芳香化程度最明顯。載氣流速測試中,使用Y型觸媒於載氣流速200ml/min下所得到的液體產物高於載氣流速100ml/min情況下。積碳分析結果Y型觸媒積碳程度最嚴重,沸石ZSM-5則最為輕微。
摘要(英) Two main topics are studied in this research. One is the synthesis of ZSM-5 on ceramic fiber paper. The other is the catalytic pyrolysis of polyethylene.
Both solution and dry gel methods were applied. in the synthesis of ZSM-5 on ceramic fiber paper. Dry gel methods were further divided into direct synthesis, steam method and acidic treatment of ceramic fiber before synthesis. Two step synthesis was applied in order to obtain high coverage of ceramic fiber in solution method. The highest crystallinity and surface area in one step synthesis of dry gel method was obtained at 160℃ for 18-27 hours under hydrothermal condition. However, the ceramic fibers are not completely covered with ZSM-5. The products of the first step synthesis at 160℃ for 9 hours were used for the second step synthesis. Complete coverage of ceramic fibers with ZSM-5 was obtained after heating at 160℃ for 9 hours. The best result is obtained when the gel-coated fibers were heated at 80℃ before synthesis and were steamed at 160℃ for 8 hours in an autoclave. Acid treatment of the ceramic fiber paper provides more nucleation sites. The fibers is completely covered by an uniform layer of well-shaped ZSM-5 crystals after 9 hours heating at 160℃.
Pyrolysis of PE into liquid products is the goal of second part study. Two stages pyrolysis was applied. The first stage was thermal pyrolysis at 530℃ under 34 L/min of nitrogen stream in a fluidized bed reactor. The product of the first stage pyrolysis was transmitted to a secondary stage fixed bed reactor for catalytic pyrolysis. The catalysts for pyrolysis were Y-type zeolite, ZSM-5 (Si/Al=31.6 and 21.6), amorphous silica-alumina, Al-MCM-41, and two kinds of FCC waste catalysts, FCC (light) and FCC (heavy), with different amounts of heavy metals. A hundred percent of liquid products were obtained over FCC (light) at 400℃ and 450℃. Liquid products of 72.2 and 54.3% wt% were obtained over Y-type zeolite at 400℃and 500℃, respectively. At 450℃, liquid products of 60.5 wt% were obtained over FCC(heavy). More gas products were obtained over strongly acidic ZSM-5 and high surface area amorphous silica alumina and Al-MCM-41. Product of C5~C12 increase with reaction temperature. The high yield of aromatic compound over Y type zeolite were obtained. The fraction of liquid products increases with decreasing contact time over Y type zeolite. Finally, the largest amount of coke was formed on Y-type zeolite, and smallest amount of coke was formed ZSM-5 among the catalysts studied.
關鍵字(中) ★ 陶瓷纖維
★ 沸石
★ 聚乙烯
★ 觸媒
關鍵字(英) ★ ceramic fiber
★ ZSM-5
★ PE
論文目次 摘要--------------------------------------------------------------------------Ⅳ
Abstract----------------------------------------------------------------------Ⅴ
圖目錄------------------------------------------------------------------------Ⅷ
表目錄----------------------------------------------------------------------ⅩⅡ
第一章、緒論-------------------------------------------------------------------1
1.1於陶瓷纖維紙上合成ZSM-5沸石的研究-------------------------------------------1
1.2聚乙烯觸媒裂解研究----------------------------------------------------------3
第二章、於陶瓷纖維紙上合成ZSM-5沸石的研究--------------------------------------6
一、簡介-----------------------------------------------------------------------6
1.1陶瓷纖維紙概要--------------------------------------------------------------6
1.2沸石結構簡介----------------------------------------------------------------7
1.3 ZSM-5沸石-----------------------------------------------------------------12
1.4 ZSM-5沸石合成-------------------------------------------------------------15
1.5沸石分析方法原理與應用-----------------------------------------------------17
1.6沸石酸性簡介及其觸媒裂解反應機構-------------------------------------------23
1.7沸石吸附性質---------------------------------------------------------------25
1.8基材上合成沸石之文獻回顧---------------------------------------------------26
二、實驗----------------------------------------------------------------------29
2.1實驗藥品-------------------------------------------------------------------29
2.2實驗儀器-------------------------------------------------------------------30
2.3實驗方法-------------------------------------------------------------------32
2.3.1 ZSM-5 膠體的合成--------------------------------------------------------32
2.3.2於陶瓷纖維上合成ZSM-5沸石------------------------------------------------32
三、結果討論------------------------------------------------------------------36
3.1結構鑑定-------------------------------------------------------------------36
3.2表面型態觀察---------------------------------------------------------------41
3.2.1溶液法(Solution Method)的SEM影像---------------------------------------41
3.2.2乾膠法(Dry Gel Method)SEM影像------------------------------------------43
3.3比表面積分析---------------------------------------------------------------51
3.4綜合討論-------------------------------------------------------------------53
四、結論----------------------------------------------------------------------55
第三章、聚乙烯觸媒裂解研究----------------------------------------------------56
一、文獻回顧------------------------------------------------------------------56
二、實驗----------------------------------------------------------------------60
2.1實驗藥品-------------------------------------------------------------------60
2.2實驗儀器-------------------------------------------------------------------61
2.2.1觸媒鑑定儀器-------------------------------------------------------------61
2.2.2裂解產物鑑定儀器---------------------------------------------------------61
2.3實驗方法-------------------------------------------------------------------63
2.3.1觸媒來源-----------------------------------------------------------------63
2.3.2廢塑膠觸媒熱裂解反應器設計-----------------------------------------------64
2.3.3觸媒裂解實驗方法---------------------------------------------------------67
三、結果與討論----------------------------------------------------------------69
3.1觸媒鑑定結果---------------------------------------------------------------69
3.1.1 X光繞射光譜結果---------------------------------------------------------69
3.1.2比表面積分析-------------------------------------------------------------74
3.1.3元素分析結果-------------------------------------------------------------75
3.2聚乙烯(PE)觸媒熱裂解結果-------------------------------------------------76
3.2.1觸媒床溫度對裂解產物的影響-----------------------------------------------76
3.2.2觸媒種類對裂解產物的影響-------------------------------------------------77
3.2.3進料流速對產物分佈的影響-------------------------------------------------84
3.2.4觸媒積碳(coke)分析-----------------------------------------------------85
3.3綜合討論-------------------------------------------------------------------91
四、結論----------------------------------------------------------------------92
第四章、總結與展望------------------------------------------------------------93
第五章、參考文獻--------------------------------------------------------------94
附錄一:表面積分析原始數據----------------------------------------------------98
附錄二:聚乙烯觸媒裂解實驗裝置-----------------------------------------------106
附錄三:附錄二:氣相層析儀分析結果-------------------------------------------108
參考文獻 參考文獻
1.D. Va, M. Marquez, G. Larsen, Micropor. Mesopor. Mater 55(2002)93.
2.M. K. Patel,E. Jochem,P. Radgen,E. Worrell,Res Con Recycl 24(1998)191.
3.J. Scheirs,Polymer Recycling:Science, Technology and Applications, John Wiely and Sons(1998).
4.堀江銳二,陶瓷纖維絕熱工學,1998年二版,4。
5.W. M. Meier, D. H. Olson, C. Baerlocher, Atlas of Zeolite Structure Types,4th ed., Elsevier,New York,1996.
6.W. M. Meier, D. H. Olson, C. Baerlocher, Atlas of Zeolite Structure Types,4th ed., Elsevier,New York,1996.
7.C. T. Kreseg, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S, Beck. Nature, 359(1992)710.
8.S. Z. Xiu, G. Q. (Max) Lu, and Graeme J. Millar, Ind. Eng. Chem. Res.,1996, 35, 2076.
9.G. T. Kokotrilo, S. C. Lawton, D. H. Olson, Natural(1978).
10.E. G. Derouane, Stud. Surf. Sci. Catal5(1980)5.
11.W. Jame, J. Catal,76(1982)433.
12.P. B. Weisz, The 7th International Congress on Catalysis, Tokyo, P.1(1980).
13.S. M. Csicsery, Zeolites, 4, 202(1984).
14.N. Y. Chen, W. E. Garwood, Catal. Rev.-Sci. Eng, 28,185(1986).
15.V. Penchev, C. Minchev, V. Kanazirev, O. Pencheva, L. Borisova, H. Lechert, H. Kacirek, Zeolites, 3, 249(1983).
16.J. C. Vedrine, A. Auroux, V. Bolis, P. Dejaifev, C. Naccache, P. Wierchowski, E. G. Derouane, J. B. Nagy, J. P. Gilson, J. P. Wolthuizen, J.Catal, 59,248(1979).
17.R. J. Arguar, G. R. Landolt, U. S. Paten,3,702,886(1972)
18.R. Kumar, P.Mukherjee, R.K. Pandey, P. Rajmohanan, A. Bhaumik, Micropor. Mesopor. Mater 22(1998)23-31.
19.I. Girnus, k. Jancke, R. Vetter, J. Richter-Mendau, J. Caro, Zeolite,15(1995)13.
20.D. Michael, P Mingos, Chemical Processing of Advanced Materials, John Wiley and Son, New York, 717(1992).
21.J. C. Jansen, A. Arafat, A. K. Barakat, H. van Bekkum, Synthesis of Microporous Materials, Vol. I, Van Nostrand Reinhold, New York, 507(1992).
22.J. B. Nagy, E. G. Derouane, ACS Symp. Ser.(1988)368.
23.E. Lippmaa, M. A. Alla, T. J. Pehk, G. Engelhardt, J. Am. Chem.Soc.,100(1978)1929.
24.A. Kumar, D. Bull, L. M. Besier, T. Sieger, P. Huo, Q. Walker, S.A. Zasadzinski, J. A. Glinka, C. Sicol, J. Margolese, D. Stucky, G. D. Chmelka, Science, 267(1995), 1138.
25.A. S. T. Chiang , K. J. Chao , J. Physical Chemistry of Solids , 62(2001)1899.
26.G.B.F. Sijger, S.G. Palmaro, K. Krishna, H. V. Bekkum, C.M. Bleek, H.P.A. Calis, Micropor. Mesopor. Mater 56(2002)33.
27.O. Larlus, V. Valtchev, J. Patarin, A. C. Faust, B. Maquin, Micropor. Mesopor. Mater 56(2002)175
28.V. Valtchev, S. Mintova, L. Konstantinov, Zeolites 15(1995)679.
29.M. Landau, N. Zaharur, M. Herskowitz, Appl. Catal 115(1994)L7.
30.V. Valtchevw, J. Hedlund, B.J. Schoeman, J. Sterte,S. Mintova, Micropor. Mesopor. Mater 8(1997)93-101.
31.C.D. Madhusoodana, R. N. Das, Y. Kameshlima, A. Yamumori,K. Okada, Micropor. Mesopor. Mater 34(2000)249-255.
32.E.V. Rebrov, G.B.F. Seijger, H.P.A. Calis, M.H.J.M. de Croon,C.M. Bleek,J.C. Schouten,Appl. Catal A:General,206(2001)125-143.
33.Z. Shan, W.E. kooten, O.L. Oudshoorn, J.C. Jansen, H. Bekkum, C.M. Bleek, H.P.A. Calis,Micropor. Mesopor. Mater 34(2000)91-101.
34.G.B.F. Seijger, O.L. Oudshoorn, W.E. Kooten, J.C. Jansen,H. van Bekkum, C.M. Bleek, H.P.A. Calis, Micropor. Mesopor. Mater 39(2000)195-204.
35.Y. Han, H. Ma, S. Qju, F. S. Xiao, Micropor. Mesopor. Mater 30(1999)321.
36.G. S. Omprakash, L. C. Anant, B. S. Rao, S. P. Mirajkar, Mater. Chem. Phys, 82(2003)538-545
37.A. Arafat, J. C. Jansen, A. R. Ebaid, H. v. Bekkum, Zeolites, 13(1993)162-165.
38.X. Xu, W. Yang, J. Liu, L. Lin,Separation and Purification Technology, 25(2001)241-249.
39.Z. Pilter, S. Szabó, M. H. Nezdei, E. P. Varsányi, Micropor. Mesopor. Mater 40(2000)257-262.
40.P. Phiriyawirut, R. Magaraphan, M. Alexander, Jamieson, S. Wongkasemjit, Micropor. Mesopor. Mater 64(2003)83-93.
41.K. H. Lee, N. S. Noh, D. H. Shin, Y. Seo, Polym Degrad Stab 78(2002)539-544.
42.R. C. Mordi, J. Dwyer, R Fields , Poly. Degrad. Stab.,46(1994)57.
43.C. Vasile, P. Onu, V. Barboiu, M. Sabliovschi, G. Moroi, D. Ganju and M. Florea, Acta Polymerica, 36(1988)309.
44.R. Bagri, P. T. Williams, J. Anal. Appl. Pyrolysis,63(2002)29-41.
45.C. Vasile, H. Pakdel, B. Mihai, P. Onu, H. Darie, Stefan Ciocalteu, J. Anal. Appl. Pyrolysis,57(2001)287-303.
46.Y. Uemichi, J. Nakamura, T. Itoh, M. Sugioka, Ind. Eng.Chem. Res, 38(1999)385-390.
47.Y. Uemichi, M. Sugioka, T. Itoh, J. Nakamura, M. Sugioka, Ind. Eng.Chem. Res,37(1998)867-872.
48.A. A. Garforth, Y. H. Lin, P. N. Sharratt, J. Dwyer, Applied Catalysis A:General, 169(1998)331-342.
49.Y. S. You,J. S. Shim, J.H. Kim, G. Seo, Catalysis Letters, 59(1999)221-227.
50.A. Marcilla,M. Belteran,J. A.Conesa,J. Anal. Appl. Pyrolysis ,58-59(2001)117-128.
51.A. Uddin, Y. Sakatu, A. Muto, Y. Shiraga, Micro. Meso. Mater, 21(1998)557-564.
指導教授 楊思明(Sze-Ming Yang) 審核日期 2004-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明