博碩士論文 91324047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:35.171.183.163
姓名 謝文祥(Wen-Hsiang Hsieh)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 氧化鋯擔載奈米金觸媒之製備與應用研究
(Preparation and application of ZrO2 supported nanosized Au catalyst)
相關論文
★ 以離子交換法製備矽-鋁二元氧化物擔體鎳觸媒之研究★ 矽粉對二氧化矽碳熱還原氮化反應影響之研究
★ 稻殼灰分和稻殼灰分- 氧化鋁擔載鎳觸媒特性與反應性之研究★ 氧化鐵粉對二氧化矽碳熱還原氮化反應影響之研究
★ 以稻殼灰分初濕含浸製備擔體銅觸媒之研究★ 以稻殼灰分沈澱固著製備擔體銅觸媒之特性研究
★ 鐵粉對稻殼灰分碳熱還原氮化反應之影響研究★ 矽粉對稻殼灰分碳熱還原氮化反應之影響研究
★ 以稻殼灰分沈澱固著製備擔體銅觸媒 之反應性研究★ 以不同方法製備稻殼灰分-氧化鋁擔載鎳觸媒之研究
★ 氧化鋁擔載奈米金觸媒之製備與應用研究★ 稻殼灰分擔載銅觸媒之製備與應用研究
★ 氧化鈦擔載奈米金觸媒應用於甲醇部分氧化產製氫氣之研究★ 氧化鐵和氧化鐵-金屬氧化物擔載奈米金觸媒之製備與應用研究
★ 氧化鋁-金屬氧化物複合擔載奈米金觸媒應用於甲醇部分氧化產製氫氣之研究★ 擔載銅觸媒和金觸媒之製備與應用研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以氧化鋯為擔體,利用共沈澱法以及沈澱固著法製備成奈米氧化鋯擔體金觸媒(簡稱為Au/ZrO2觸媒),同時利用感應耦合電漿原子放射光譜儀(ICP-AES)、氮吸附法、X射線繞射儀(XRD)、熱重分析儀(TGA)、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、光電子光譜儀(XPS)等各項儀器與分析技術,分別對擔體及觸媒進行鑑定,並利用甲醇部分氧化反應做為催化活性的測試,藉以評估Au/ZrO2觸媒產生氫氣並應用於質子交換膜燃料電池的可行性。
實驗結果得知,以共沈澱法製備的Au/ZrO2觸媒,其觸媒前趨物至少在698 K下鍛燒才會完全分解形成氧化鋯。由氮吸附結果指出,沈澱固著法所製備的Au/ZrO2觸媒,BET比表面積的幾乎不變;共沈澱法製備的金觸媒,隨著載量的增加使BET比表面積下降。從XRD圖譜結果,發現沈澱固著法所製備的金觸媒,不論鍛燒溫度的高低都可以觀察到金的繞射峰出現;共沈澱法製備的金觸媒只有在高載量才能出現金的繞射峰。從TEM分析結果,發現不論以共沈澱法或是沈澱固著法製備的Au/ZrO2觸媒,都可以在照片中找到圓球形的金晶粒。而XPS分析的結果指出,共沈澱法製備的Au/ZrO2觸媒表面皆為金屬態的金;但是沈澱析出法製備的Au/ZrO2表面都會有金屬態的金和氧化態的金存在,而隨著鍛燒溫度的增加金屬態對氧化態的金比例會逐漸上升。經過活性測試,我們認為氧化態的金為觸媒反應的活性位置,沈澱固著法為較佳的製備方法。而鍛燒的條件會影響觸媒活性,最佳的鍛燒溫度為573 K。以沈澱固著法製備的2 wt% Au/ZrO2觸媒在563 K下進行甲醇部分氧化反應,能發揮最佳的活性和氫氣選擇率。最後和文獻上的銅觸媒、鈀觸媒的催化結果做比較,Au/ZrO2觸媒不僅擁有不錯的催化活性,且沒有CO的產生(小於500 ppm)。顯然地,Au/ZrO2觸媒在甲醇部分氧化反應中能夠選擇性氧化CO,使得氫氣產物中幾乎沒有CO的污染。
摘要(英) In this work, zirconium oxide (ZrO2) was used as a catalyst support. ZrO2 supported nanosized Au catalysts (Au/ZrO2) were prepared by the deposition-precipitation (DP) and co-precipitation method (CP). The supported Au catalysts were characterized by inductively coupled plasma-atomic emission spectrometer (ICP-AES), X-ray diffraction (XRD), thermogravimetric analyzer (TGA), nitrogen adsorption method, scanning electron microcopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS).
The thermal decomposition of the Au catalyst precursor starts above 698K. The specific surface area of the calcined catalysts prepared by CP method decreases with increasing the Au loading but catalysts prepared by DP method do not show any difference. From the image of TEM, we can see the black spherical Au crystallites clearly and good dispersion in both two preparation methods. Furthermore, the mean size of Au crystallites increases with an increase in calcination temperature only occurring in Au/ZrO2 prepared by CP method. In XPS analysis, Au catalysts prepared by DP method shows that not only have metallic Au but also oxidative Au in catalysts surface. As calcination temperature is getting higher, the ratio of metallic Au to ionic Au becomes larger.
Zirconium oxide supported Au catalysts was tested by the partial oxidation of methanol (POM) at 503-563K. The results indicate that the optimal preparation method and operating conditions are DP method, 2 wt% in Au loading, 573 K in calcination temperature, and 563 K in reaction temperature.
Compare to copper and palladium catalysts in POM reaction, Au/ZrO2 catalysts display good activity and hydrogen selectivity. Furthermore, Au/ZrO2 catalysts show no CO present. Nanosized Au/ZrO2 may have an opportunity to apply in proton exchange membrane fuel cell.
關鍵字(中) ★ 金觸媒
★ 甲醇部分氧化反應
★ 燃料電池
★ 氧化鋯
關鍵字(英) ★ Au catalyst
★ partial oxidation of methanol reaction
★ fuel cell
★ zirconium oxide
論文目次 摘 要 I
ABSTRACT III
目錄 V
圖索引 IX
表索引 XV
第一章 緒論 1
1.1 前言 1
1.2 燃料電池 1
1.3 甲醇製氫 5
1.4 金觸媒 6
1.5 研究內容與論文架構 7
第二章 文獻回顧 8
2.1 製備方法 8
2.2 鍛燒程序 12
2.3 擔體效應 13
2.4 金的活性位置 13
2.5 金觸媒的應用 15
2.5.1 一氧化碳氧化反應 16
2.5.2 有機揮發物質氧化反應 18
2.5.3 水氣轉移反應 18
2.5.4 碳氫化合物選擇性氧化反應 19
2.5.5 甲醇部分氧化反應 19
第三章 實驗方法與裝置 21
3.1 擔體金觸媒的製備 21
3.1.1 觸媒製備程序 21
3.1.2 觸媒代號說明 24
3.2 擔體金觸媒的鑑定分析 25
3.2.1 感應耦合電漿原子放射光譜儀(ICP-AES)分析 25
3.2.2 BET比表面積 26
3.2.3 X-射線繞射分析(XRD) 29
3.2.4 熱重分析(TGA) 30
3.2.5 掃描式電子顯微鏡(SEM) 33
3.2.6 穿透式電子顯微鏡(TEM) 34
3.2.7光電子光譜儀(XPS) 34
3.3 觸媒的活性測試-甲醇部分氧化 35
3.4 實驗流程與操作變數 38
3.5 數據的計算與實例 38
3.5.1 擔體金觸媒理論載量的定義與計算 38
3.5.2 轉化率的定義與計算 41
3.5.3 選擇率的定義與計算 44
3.6 藥品、氣體及儀器設備 46
3.6.1 藥品 46
3.6.2 氣體 46
3.6.3 儀器設備 46
第四章 結果與討論 48
4.1 Au/ZrO2觸媒製備條件的探討 48
4.1.1 不同製備方法對金金屬載量的影響 48
4.1.2 鍛燒條件的選擇 48
4.2 Au/ZrO2觸媒的特性分析 51
4.2.1 觸媒總表面積的測定結果 51
4.2.2 X-射線繞射(XRD)的分析結果 52
4.2.3 穿透式電子顯微鏡(TEM)的分析結果 58
4.2.4 光電子光譜儀(XPS)的分析結果 66
4.3 Au/ZrO2觸媒的化性分析 70
4.3.1 Au/ZrO2觸媒的金屬載量對活性以及氫氣選擇性的影響 70
4.3.2 Au/ZrO2觸媒的鍛燒溫度對活性以及氫氣選擇性的影響 73
4.3.3 Au/ZrO2觸媒的製備方法對活性以及氫氣選擇性的影響 76
4.3.4 反應溫度對甲醇部分氧化反應的活性以及氫氣選擇性影響 76
4.4.5 反應時間對Au/ZrO2的影響 79
4.3.6 Au/ZrO2觸媒與文獻上銅觸媒和鈀觸媒在甲醇部分氧化反應上分析結果比較 82
第五章 結論 86
第六章 參考文獻 88
參考文獻 Agrell, J., Germani, G., Jaras, S. G., Boutonnet, M., “Preduction of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts prepared by microemulsion technique”, Appl. Catal., A, 242:233-245 (2003).
Akita, T., Okumura, M. and Hautra, M. “Hydrogenation of 1,3-Butadiene and of crotonaldehyde over highly dispersed Au catalysts”, Catal. Today, 74:265 (2002).
Alejo, L., Lago, R., Pena, M. A. and Fierro, J. L. G. “Partial oxidation of methanol to produce hydrogen over Cu-Zn based catalysts”, Appl. Catal., A,162:281-297 (1997).
Andreev, D., Idakiev, V., Tabakova, T. and Andreev, A. “Low-temperature water-gas shift reaction over Au/Alpha-Fe2O3”, J. Catal., 158:354 (1996).
Arrii, S., Morfin, F., Renouprez, A. J. and Rousset, J. L. “Oxidation of CO on gold supported catalysts prepared by laser vaporization: Direct evidence of support contribution”, J. AM. CHEM. SOC., 126:1199-1205 (2004).
Bamwenda, G. R., Tsubota, S., Nakamura, T. and Haruta, M. “The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation”, Catal. Lett., 44:83 (1997).
Bethke, G. K. and Kung, H. H. “Selective Co Oxidation in a Hydrogen-rich stream over Au/Gamma-Al2O3 catalysts”, Appl. Catal., A,194:43 (2000).
Boccuzzi, F., Chiorino, A., Manzoli, M., Lu, P., Akita, T., Ichikana, S. and Haruta, M. “Au/TiO2 nanosized samples - a catalytic, TEM, and FTIR study of the effect of calcination temperature on the CO oxidation”, J. Catal., 202:256 (2001).
Bond, G. C. “Gold - a relatively new catalyst”, Catal. Today, 72:5-9 (2002).
Chang, C. K., Yeh, C. T. and Chen, Y. J. “Characterizations of alumina-supported gold with temperature-programmed reduction”, Appl. Catal., A,174:13-23 (1998).
Chen, Y. J. and Yeh, C. T. “Deposition of highly dispersed gold on alumina support”, J. Catal., 200:59 (2001).
Claus, P., Bruckner, A., Mohr, C. and Hofmeister, H. “Supported gold nanoparticles from quantum dot to mesoscopic size scale: Effect of electronic and structural properties on catalytic hydrogenation of conjugated functional groups ”, J. AM. CHEM. SOC., 122:11430-11439 (2000).
Cordi, E. M., Falconer, J. L. “Oxidation of Volatile Organic-Compounds on a Ag/Al2O3 Catalyst”, Appl. Catal., A,151, 1:179-191 (1997).
Cubeiro, M. L. and Fierro, J. L. G. “Selective production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts”, Appl. Catal., A,168:307 (1998).
Cubeiro, M. L. and Fierro, J. L. G. “Partial oxidation of methanol over supported palladium catalysts”, Appl. Catal., A,168:307-322 (1998).
Date, M, Yamashita, Chiorino, Boccuzzi, and Haruta, M. “Performance of Au/TiO2 catalyst under ambient conditions”, Catal. Today, 72:1-2,89-94 (2002).
Dietz, W. A., ”Response factors for gas chromatographic Analyses”, J. of G. C.- February: 68 (1967)
Ekdunge, P. and Raberg, M. “The fuel-cell vehicle analysis of energy use, emissions and cost”, Int. J. Hydrogen Energy, 23:381 (1998).
Emonts, B., Hansen, J. B., Jorgensen, S. I., Höhlein, B. and Peters, R. “Compact methanol reformer test for fuel-cell powered light-duty vehicles”, J. Power Source, 71:288 (1998).
Galvagno, S. and Parravano. G , Ber. Bunsenges. Phys. Chem. 83:894 (1979)
Gardner, S. D., Hoflund, G. B., Upchurch, B. T., Schryer, D. R., Kielen, E. J. and Schryer, J. “Comparison of the performance-characteristics of Pt/SnOx and Au/Mnox catalysts for low-temperature CO oxidation”, J. Catal., 129:114 (1991).
Grisel, R. J. H., Weststrate, Goossens, Craje, Vanderkraan, and Nieuwenhuys, “Oxidation of CO over Au/MOX/Al2O3 multicomponent catalysts in a hydrogen-Rich environment”, Catal. Today,72:1-2,123-132 (2002).
Grunwaldt, J. D., Macirjewski, M., Becker, O. S., Fabrizioli, P. and Baiker, A. “Comparative study of Au/TiO2 and Au/ZrO2 catalysts for low-temperature CO oxidation”, J. Catal., 186:458-469 (1999).
Haruta, M. “Size-dependency and support-dependency in the catalysis of gold”, Catal. Today, 36:153 (1997).
Haruta, M., A. Ueda, S. Tsubota, R. M. Torres Sanchez, “Low temperature catalystic combustion of methanol and its decomposed of methanol and its decomposed derivatives over supported gold catalysts”, Catal. Today 29:443-447 (1996).
Haruta, M., Yamada, N., Kobayashi, T. and Lijima, S. “Gold Catalysts Prepared by Coprecipitation for Low-Temperature Oxidation of Hydrogen and of Carbon-Monoxide”, J. Catal., 155:301 (1989).
Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M. J. and Delmon, B. “Low-temperature oxidation of CO over gold supported on TiO2, Alpha-Fe2O3, and Co3O4”, J. Catal., 144:175 (1993).
Hcyashi, T. and Haruta, M. “Effect of an loading on selectivity in the reaction of propylene on Au/TiO2 catalyst”, Shokubai, 37:75 (1995).
Höhlein, B. J., Bogild-Hansen, Bröckerhoff, P., Colsman, G., Emonts, B., Menzer, R. and Riedel, E. “Hydrogen from methanol for fuel-cells in mobile systems - development of a compact reformer”, J. Power Sources, 61:143 (1996).
Huang, T. J. and Chren, S. L. “Kinetics of partial oxidation of methanol over a copper-zinc catalyst”, Appl. Catal., 40:43 (1988).
Huang, T. J. and Wang, S.W. “Hydrogen-production via partial oxidation of methanol over copper-zinc catalysts”, Appl. Catal., 24:287 (1986).
Hutchings, G. J. , Gold Bull., 29, 123 (1996)
Joensen, F. and Rostrup-Nuelsen, J. R. “Conversion of hydrocarbons and alcohols for fuel-cells”, J. Power Sources, 105:195 (2002).
Katz, J. Am. Ceram. Soc., 54:531 (1971)
Klabunde, K. J., “Nanoscale Materials in Chemistry” John Wiley & Sons Inc. New York, Chapter 2 (2001)
Knell, A., Barnickel, P., Baiker, A., Wokaun, A., “CO oxidation over Au/ZrO2 catalysts: activity , Deactivation Behavior , and Reaction Mechanism”, J. Catal., 137:306-321 (1992)
Kung, H. H., Kung, M. C., Costello, C.K., ” Supported Au catalysts for low-temperature CO oxidation”, J. Catal., 216,1-2:425-432 (2003)
Kung, H. H., Kung, M. C., Oh, H. S., Costello, C. K., Cheung, C., “Regeneration of Au/gamma-Al2O3 deactivated by CO oxidation”, Studies In Surface Science and Catalysis, 139:375-381 (2001)
Kumar, R., Ahmed, S., Krumplet, M., Myles, K. M., Agron National Laboratory Report, ANL-92/31, Argone, IL, USA, 1992
Lin, S. D., Bollinger, M. and Vannice, M. A. “Low-temperature CO oxidation over Au/TiO2 and Au/SiO2 catalysts (English)”, Catal. Lett., 17:245 (1993).
Lindstrom, B. and Pettersson, L. J. “Deactivation of copper-based catalysts for fuel-cell applications”, Catal. Lett., 74:27 (2001).
Maciejewski, M., Fabrizioli, P., Grunwaldt, J. D., Becker, O. S. and Baiker, A. “Supported gold catalysts for CO oxidation: Effect of calcination on structure, adsorption and catalytic behaviour”, Phys. Chem. Phys. Chem., 3:3846-3855 (2001).
Mavrikakis, M., Stoltze, P. and Norskov ,J. K. “Making gold less noble”, Catal. Lett., 64:101-106 (2000).
Minico, S., Scire, S., Crisafulli, C., Maggiore, R. and Galvagmo, S. “Catalytic combustion of volatile organic compounds on gold/iron oxide catalysts”, Appl. Catal., B,28:245-251 (2000).
Okumura, M and Haruta, M “Preparation of Supported Gold Catalysts by Liquid-Phase Grafting of Gold Acethylacetonate for Low-Temperature”, Chem. Lett. , 4:396-397 (2000)
Okumura, M., Tsubota, S., Iwamoto, M. and Haruta, M. “Hemical-vapor-deposition of gold nanoparticles on Mcm-41 and their catalytic activities for the low-temperature oxidation of CO and of H-2”, Chem. Lett., 315 (1998).
Park, E. D., Lee, J. S., ”Effects of Pretreatment Condition on CO oxidation over supported Au catalysts”, J. Catal., 186, 1:1-11 (1999).
Sekizawa, K., Yano, S. I., Eguchi, K. and Arai, H. “Selective removal of CO in methanol reformed gas over Cu-supported mixed-metal oxides”, Appl. Catal., A,169:291 (1998).
Schimpf, S., Lucas, M., Mohr, C., Rodemerck, U., Bruckner, A., Radnik, J., Hofmeister, H. and Claus, P. “Supported gold nanoparticles: In- depth catalyst characterization and application in hydrogen and oxidation reactions”, Catal. Today, 72:63-78 (2002).
Velu, S., Suzuki, K., Okazaki, M., Kapoor, M. P., Osaki, T., Ohashi, F. “Oxidative Steam Reforming of Methanol over CuZnAl(Zr)-Oxide Catalysts for the Selective Production of Hydrogen for Fuel-Cells - Catalyst Characterization and Performance Evaluation”, J. Catal., 194, 2:373-384 (2000).
Visco, A. M., Donato, A., Milone, C., Galvagno, S. “Catalytic-Oxidation of Carbon-Monoxide over Au/Fe2O3 Preparations” React. Kinet. Catal. Lett.,61,2:219-226 (1997)
Wang, Z., Xi, J., Wang, W. and Lu, G. “Selective production of hydrogen by partial oxidation of methanol over Cu-/Cr catalysts”, J. Mol. Cat., A,191:123-134 (2003).
張兆剛, “Au/Al2O3的製備和特性探討”, 國立清華大學化學研究所碩士論文(1997)
陳永杰,洪華聖,葉君棣,“支撐性金觸媒在甲醇部分氧化製氫反應上的應用”, 第19屆觸媒與反應工程研討會(2001)
指導教授 張奉文(Feg-Wen Chang) 審核日期 2004-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明