博碩士論文 91343004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.92.96.236
姓名 曾信智(Hsinn-Jyh Tzeng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 黏彈性磨料應用於複雜曲面的精拋技術研究
(A Study of Visco-elastic Abrasive Applied to Micro Lapping Techniques for Complex Surface)
相關論文
★ 運用化學機械拋光法於玻璃基板表面拋光之研究★ 電泳沉積輔助竹碳拋光效果之研究
★ 凹形球面微電極與異形微孔的成形技術研究★ 運用電泳沉積法於不鏽鋼鏡面拋光之研究
★ 電化學結合電泳精密拋光不銹鋼之研究★ 純水中的電解現象分析與大電流放電加工特性研究
★ 結合電化學與電泳沉積之微孔複合加工研究★ 放電加工表面改質與精修效果之研究
★ 汽車熱交換器用Al-Mn系合金製程中分散相演化及再結晶行為之研究★ 磁場輔助微電化學銑削加工特性之研究
★ 磁場輔助微電化學鑽孔加工特性之研究★ 微結構電化學加工底部R角之改善策略分析與實做研究
★ 加工液中添加Al-Cr混合粉末對工具鋼放電加工特性之影響★ 不同加工液(煤油、蒸餾水、混合液)對鈦合金(Ti-6Al-4V)放電加工特性之影響
★ 放電與超音波振動複合加工添加TiC及SiC粉末對Al-Zn-Mg系合金加工特性之影響★ 添加石墨粉末之快速穿孔放電加工特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 3C導光板成形模具、生醫微流道、微射出模具與精密機械等複雜曲面,由於放電加工後易殘留毛邊,所形成的再鑄層散佈著微細裂紋或氣孔等缺陷,使得加工面品質變差。本論文研究重點針對複雜曲面提出改善表面品質的精拋方法。
首先開發一經濟且實用的黏彈性磨料,其次是結合磨料特性應用於往復式磨料流動研拋法進行表面精修,遂而發展一種新型螺旋式磨料流動研拋技術,藉著高速旋轉螺桿傳遞磨料,對試件表面產生極微研拋的去除效果,而獲得精細加工表面的一種超精密加工方法。經由實驗結果分析顯示,確實能有效去除放電加工所造成的毛邊或殘留不潔物,而獲得較佳的形狀精度。最後是針對內孔表面再進行螺旋式磨料流動研拋,表面粗糙度由0.23μm 大幅降至0.05μm Ra,表面有極微量的材料去除,達到快速精拋的效果。
摘要(英) For the complex surface products of the formed mold of 3C guide light board, the micro channel, micro inject mold of bio-medicine and the screw of precision mechanism, the deburring and recast layer in EDMed work-piece decreases the surface quality. The tiny fragments from the recast layer are likely to spread tiny cracks and produce micro blowholes. In this study, three techniques are proposed to improve the surface roughness and to achieve a high surface quality.
First, an economical and practical abrasive with visco-elastic abrasive for fine polishing was developed. A fine processed surface can be obtained and the effect of the removal of the tiny fragments can be achieved through this technique. The second technique applies the method of reciprocating abrasive flow machining to the surface, creating more characteristics of visco-elastic abrasive. Thus, the surface of the micro orifice of complex surface can be quickly and effectively polished and improved. Finally, this study develops a new method of spiral abrasive flow machining with elastic abrasive, especially suited for the complex surface. The abrasive medium removes tiny fragments and debris. It improves the initial surface roughness from 0.23µm to 0.05µm Ra. This spiral abrasive flow machining method also homogenously polishes the work-piece surface, and clearly improves the quality of finished surfaces. This technology is low cost and highly efficient.
Keywords:Bio-medicine、micro channel、electric discharge machining、recast layer、visco-elastic abrasive、reciprocating abrasive flow machining、spiral abrasive flow machining、surface roughness.
關鍵字(中) ★ 生醫
★ 表面粗糙度
★ 螺旋式磨料流動研拋
★ 表面精修
★ 再鑄層
★ 黏彈性磨料
★ 放電加工
★ 微流道
★ 往復式磨料流動研拋法
關鍵字(英) ★ visco-elastic abrasive
★ micro channel
★ Bio-medicine
★ surface roughness
★ electric discharge machining
★ reciprocating abrasive flow machining
★ spiral abrasive flow machining
★ recast layer
論文目次 中文摘要.............................................................................................I
英文摘要....................................................................................................II
謝誌..........................................................................................................III
目錄...........................................................................................................V
圖目錄...................................................................................................IX
表目錄..................................................................................................XIII
符號說明...............................................................................................XIV
第一章 緒論..............................................................................................1
1-1研究動機與目的.........................................................................1
1-2研究背景.....................................................................................5
1-3文獻回顧.......................................................................................14
1-4研究方法...................................................................................16
1-5本論文構成...............................................................................18
第二章 黏彈性磨料開發........................................................................20
2-1前言...........................................................................................20
2-2實驗方法與研究內容...................................................................21
2-2-1黏彈性磨料之開發.................................................................21
2-2-1-1碳化矽顆粒特性................................................................22
2-2-1-2黏彈性磨料之調製...........................................................23
2-2-1-3磨料的測試與分析...........................................................26
2-2-2 往復式磨料流動研拋設備設計組裝與實驗........................30
2-2-2-1實驗設備....................................................................30
2-2-2-2模具組.....................................................................31
2-2-3往復式磨料流動研拋實驗.....................................................32
2-2-3-1實驗材料....................................................................33
2-2-3-2 實驗參數條件設定........................................................34
2-3 結果與討論...............................................................................37
2-3-1 磨料粒徑與濃度對黏度之影響........................................37
2-3-2 加工條件對黏度之影響....................................................40
2-3-3 加工條件對磨料溫度之影響............................................40
2-3-4 加工條件對表面粗糙度之影響........................................41
2-3-4-1 磨料粒徑對表面粗糙度之影響................................41
2-3-4-2 磨料濃度對表面粗糙度之影響................................45
2-3-4-3 擠製壓力對表面粗糙度之影響................................46
2-3-4-4 加工時間對表面粗糙度之影響................................47
2-3-5 磨粒於加工前、後之磨耗影響..........................................48
2-3-6 表面形狀精度之改善........................................................50
2-4 結論...........................................................................................51
第三章 往復式磨料流動研拋法應用於複雜曲面之精修....................52
3-1前言.............................................................................................52
3-2基本原理.....................................................................................53
3-3實驗方法與研究內容.................................................................56
3-3-1應用於銅管焊接內表面精修改善.......................................56
3-3-1-1 實驗方法.....................................................................56
3-3-1-2 實驗材料.....................................................................58
3-3-1-3 結果與討論.................................................................59
3-3-2應用於不鏽鋼微射出模具表面精修改善..........................62
3-3-2-1 實驗方法......................................................................62
3-3-2-2 實驗材料......................................................................63
3-3-2-3 結果與討論..................................................................65
3-4 結論.........................................................................................70
第四章往復式磨料流動研拋法應用於線放電表面精修改善..............71
4-1 前言............................................................................................71
4-2 研究方法....................................................................................72
4-2-1 田口實驗計劃法.................................................................72
4-2-2 變異數分析.........................................................................73
4-2-3 訊號/噪音比........................................................................74
4-3 實驗設備與方法........................................................................75
4-3-1 實驗方法.............................................................................75
4-3-2 實驗材料.............................................................................75
4-4 結果與討論...............................................................................76
4-4-1 實驗觀察值的S/N Ratio....................................................78
4-4-2線放電加工後之微流道形狀及表面形貌..........................79
4-4-3磨料黏度與加工時間之關係..............................................80
4-4-4加工條件對磨料溫度與表面粗糙度之關係.......................81
4-4-5表面粗糙度與磨料粒徑、濃度與擠製壓力之關係.............82
4-4-6表面形貌精修效果...............................................................85
4-5 結論...........................................................................................88
第五章 螺旋式磨料流動研磨法應用於圓管內表面拋光....................89
5-1 前言...........................................................................................89
5-2 基本原理...................................................................................90
5-2-1 螺旋研拋方法的裝置設計.................................................92
5-3 實驗方法與研究內容...............................................................93
5-3-1 實驗設備.............................................................................93
5-3-2 實驗材料.............................................................................95
5-3-3 實驗方法.............................................................................96
5-3-4 研究方法.............................................................................97
5-4 結果與討論...............................................................................98
5-4-1 加工條件對表面精度之影響.............................................98
5-4-1-1加工時間對磨料黏度之影響.........................................98
5-4-1-2磨料溫度之量測.............................................................99
5-4-1-3磨料粒徑對表面粗糙度之影響...................................101
5-4-1-4磨料濃度對表面粗糙度與材料去除率之影響...........102
5-4-1-5加工間隙對表面粗糙度之影響...................................105
5-4-1-6加工轉數對表面粗糙度與材料去除率之影響...........107
5-4-2表面研拋之效果.................................................................109
5-5 結論..........................................................................................111
第六章 總結論......................................................................................113
參考文獻................................................................................................118
作者簡介................................................................................................126
參考文獻 [1] T. Masuzawa, C.L. Kuo, J. Fujino, “A Combined Machining Process for Micronozzle Fabrication ”, Annals Of CIRP, 43 (1994), pp.80-85.
[2] T. Masuzawa, M. Fujino, K. Kobayashi and T.Suzuki, “Wire Electro-Discharge Grinding for Micro-Machining ”, Annals of the CIRP, 34,1 (1985), pp.431-434.
[3] D.M. Allen, A. Lecheheb, “Micro electro discharge machining of ink jet nozzles: optimum selection of material and machining parameters”, Journal of Materials Processing Technology, 58 (1996), pp. 53-66.
[4] X.Q. Sun, T. Masuzawa, M. Fjino, “Micro ultrasonic machining and its applications in MEMS”, Sensors and actuators, A57 (1996), pp. 159-164.
[5] G.F. Benedict, Non-traditional manufacturing processes, Marcel Dekker, New York, (1987).
[6] Extrude Hone Corp., 產品目錄資料.
[7] T.R. Loveless, R.E. Williams, K.P. Rajurkar, “A study of the effects of Abrasive-flow finishing on various machined surfaces”, Journal of Materials Processing Technology, 47, No.1-2 (1994), pp.133-151.
[8] S. Singh, H.S. Shan, P. Kumar, “Wear behavior of materials in magnetically assisted abrasive flow machining”, Journal of materials processing technology, 128 (2002), pp. 155-161.
[9] 張瑞慶譯, 非傳統加工,高立圖書有限公司, (2000), pp. 61-70.
[10] L.J. Rhoades, “Abrasive flow machining: a case study”, Journal of Materials Processing Technology, 28 (1991), pp.107-116.
[11] V.K. Jain, S.G. Adsul, “Experimental investigations into abrasive flow machining (AFM)”, International Journal of Machine Tools & Manufacture, 40 (2000), pp.1003-1021.
[12] R.K. Jian, V.K. Jain, “Specific energy and temperature determination in abrasive flow machining process”, International Journal of Machine Tool & Manufacture, 41 (2001), pp. 1689-1704.
[13] R.K. Jian, V.K. Jain, “Stochastic simulation of active grain density in abrasive flow machining”, Journal of Materials processing Technology, 152 (2004), pp. 17-22.
[14] K.L. Petri, R.E. Billo and B. Bidanda, “A neural network process model for abrasive flow machining operations , Journal of Manufacturing Systems”, 17 (1998), pp.52-64.
[15] V.K. Gorana, V.K. Jain and G.K. Lal, “Forces prediction during material deformation in abrasive flow machining”, Wear, 260 (2006), pp.128-139.
[16] J.J. Haan, P.S. Steif, “Abrasive wear due to slow flow of a concentrated suspension”, Wear, 219 (1998), pp.177-183.
[17] R.K. Jain, V.K. Jain, P.M. Dixit, “Modeling of material removal and surface roughness in abrasive flow machining process”, International Journal of Machine Tool & Manufacture, 39 (1999), pp. 1903-1923.
[18] R.K. Jain and V.K. Jain, P.K. Kalra, “Modeling of abrasive flow machining process: a neural network approach”, Wear, 231 (1999), pp. 242-248.
[19] H. Yamagguchi, T. Shinmura, “Study of an internal magnetic abrasive finishing using a pole rotation system- Discussion of the characteristic abrasive behavior”, Journal of the International Societies for Precision Engineering and Nanotechnology, 24 (2000), pp. 237-244.
[20] H. Yamaguchi, T. Shinmura, “Study of the surface modification resulting from an internal magnetic abrasive finishing process”, Wear 225-229 (1999), pp. 246-255.
[21] T. Shinmura, F.H. Wang, T. Aizawa, “Study on a new finishing process of fine ceramics by magnetic abrasive machining – on the improving effect of finishing efficiency obtained by mixing diamond magnetic abrasives with ferromagnetic particles”, Journal of JSPE, 59, No. 8 (1993), pp. 1251-1256. (in Japanese).
[22] M.D. Krymsky, “Magnetic abrasive finishing”, Metal Finishing, 91, No. 7 (1993), pp. 21-25.
[23] K. Tsuchiya, Y. Shimizu, K. Sakaki, M. Sato, “Polishing mechanism of magnetic abrasion”, Journal of the Japan Institute of Metals, 57, No. 11 (1993), pp. 1333-1338. (in Japanese)
[24] P. Jayakumar, S. Ray, V. Radhakrishnan, “Optimising progress parameters of magnetic abrasive machining to reduce the surface roughness value”, Journal of Spacecraft Technology, 7, No. 1 (1997), pp. 58-64, Jan.
[25] Liao, Y. S., Huang, J. T. and Su, H.C., “A Study on The Machining-Parameters Optimization of Wire Electrical Discharge Machining”, Journal of Materials Processing Technology, 71 (1997), pp. 487-493.
[26] Scott, D., Boyina, S. and Rajurkar, K.P. (1991), “Analysis and Optimization of Parameter Combinations in Wire Electrical Discharge Machining”, International Journal Production Research, Vol. 29, No. 11, pp. 2189-2207.
[27] V.K. Jain, P. Kumar, P.K. Behera, S.C. Jayswal, “Effect of working gap and circumferential speed on the performance of magnetic abrasive finishing process”, Wear, 250 (2001), pp. 384-390.
[28] T. Shinmura, T. Aizawa, “Study on internal finishing of a non-ferromagnetic tubing by magnetic abrasive machining process”, Bull. Japan Soc. of Prec. Engg., 23, No. 1 (1989), pp. 37-41.
[29] H. Yamaguchi, T. Shinmura, “New internal finishing process by application of magnetic abrasive machining (3rd report, effects of finishing pressure distribution on characteristics)”, Transactions of the Japan Society of Mechanical Engineers, Part C, 61, No. 586 (1995), pp. 2605-2611.(in Japanese)
[30] H. Yamaguchi, T. Shinmura, “Study on a new internal finishing process by application of magnetic abrasive machining (4th report, effects of diameter of magnetic abrasives on finishing characteristics)”, Transactions of the Japan Society of Mechanical Engineers, Part C, 61, No. 591 (1995), pp. 4470-4475.(in Japanese)
[31] H. Yamaguchi, T. Shinmura, “Study of an internal magnetic abrasive finishing using a pole rotation system – discussion of the characteristic abrasive behavior”, Precision Engineering, 24 (2000), pp. 237-244.
[32] J. D. Kim, “Polishing of ultra-clean inner surfaces using magnetic force”, The Int. J. of Advanced Manufacturing Technology, 21 (2003), pp. 91-97.
[33] H. Ramasawmy, K. Stout, L. Blunt, “Effect of secondary processing on EDM surfaces”, Surface Engineering, 16, No. 6 (2000), pp. 501-505.
[34] Z. Wang, Y. Luan, T. Pang, W. Liu, “Elastic and electrolytic ultraprecision polishing”, Metal Finishing (1998), pp. 22-24.
[35] B.H. Yan, M.D. Chen, “Effect of ultrasonic vibration on electrical discharge machining characteristic of Ti-6Al-4V alloy”, Journal of Japan Institute of Light Metals, 44, No.5 (1993), pp.281-285.
[36] S.L. Chen, F.Y. Huang, Y. Suzuki, B. H. Yan, “Improvement of material removal rate of Ti-6Al-4V alloy by electrical discharge machining with multiple ultrasonic vibration”, Journal of Japan Institute of Light Metals, 47 No.4 (1997), pp.220-225.
[37] N. Guo, T.C. Lee, T.M. Yue and W.S. Lau, “A study of ultrasonic-aided wire electrical discharge machining”, Journal of Materials Processing Technology, 63 (1997), pp823-828.
[38] B.H. Yan, and C.C. Wang, “The machining characteristics of Al2O3/6061Al composite using rotary electro-discharge machining with a tube electrode”, Journal of Materials Processing Technology, 195 (1999), pp.222-231.
[39] B.H. Yan, C.C. Wang, W.D. Liu and F.Y. Huang, “Machining characteristics of Al2O3/6061Al composite using rotary EDM with a disklike electrode”, The International Journal of Advanced Manufacturing Technology, 16 (2000), pp.322-333.
[40] Y.C. Lin, B.H. Yan, F.Y. Huang, “Surface modification of Al-Zn-Mg aluminum alloy using combined process of EDM with USM”, Journal of Materials Processing Technology, 115 (2001), pp. 359-366.
[41] R.E. Williams, K.P. Rajurkar, “Metal removal and surface finish characteristics in abrasive flow machining”, ASME, PED. 38 (1989), pp.93-106.
[42] R.E. Williams, K. P. Rajurkar, “Stochastic modeling and analysis of abrasive flow machining”, Trans, ASME, J.Eng. Ind. 114 (1992), pp.74-81.
[43] L.J. Rhoades, “Abrasive flow machining-progress in productivity”, SME Technical Paper, MR 1993 (1993), pp.1-16.
[44] J.J. Haan, P.S. Steif, “Abrasive wear due to slow flow of a concentrated suspension”, Wear 219 (1998), pp.177-183.
[45] A.B. Khairy, “Aspects of surface and edge finish by magnetoabrasive particles”, Journal of Materials Processing Technology, 116 (2001), pp. 77-83.
[46] V.K. Jain, “Simulation of surface generated in abrasive flow machining (AFM) Process”, Robotics and Computer Integrated Manufacturing, 15 (1999), pp.403-412.
[47] R.K. Jain, Vijay Kumar Jain, “Optimum selection of machining conditions in abrasive flow machining using neural network”, Journal of Materials Processing Technology, 108 (2000), pp.62-67.
[48] V.K. Jain, C. Ranganatha, and K. Muralidhar, “Evaluation of rheological properties of medium for AFM process”, Machining Science and Technology, 5(2) (2001), pp.151-170.
[49] S. Singh, H.S. Shan, “Development of magneto abrasive flow machining process”, International Journal of Machine Tool & Manufacture, 42 (2002), pp.953-959.
[50] S. Singh, H.S. Shan, Pradeep Kumar, “Parametric optimization of magnetic-field-assisted abrasive flow machining by the Taguchi method”, Quality and Reliability engineering international, 18 (2002), pp.273-283.
[51] R.K. Jain, V.K. Jain, “Finite element simulation of abrasive flow machining”, Proc. Instn Mech. Engrs., 217(B) (2003), pp.1723-1736.
[52] V.K. Gorana, V.K. Jain, G.K. Lal, “Experimental investigation into cutting forces and active grain density during abrasive flow machining”, International Journal of Machine Tool & Manufacture, 44 (2004), pp.201-211.
[53] Taguchi, G., Introduction to Quality Engineering, Asian Productivity Organization, Tokyo, (1990).
[54] Montgomery, D.C., “Design and Analysis of Experiments”, John Wily, Singapore, (1991).
[55] Fisher, R. A., “Statistical Methods for the Research Worker”, Olive and Boyd, London, (1925).
[56] Ross, P .J., Taguchi Techniques for Quality Engineering, McGraw- Hill, New York, (1992).
[57] G.W. Chang, B.H. Yan and R.T. Hsu,“Study on cylindrical magnetic abrasive finishing using unbonded magnetic abrasives”, International Journal of Machine Tools and Manufacture, 42 (2002), pp.575-583.
[58] B.H. Yan, Y.C. Lin,and F.Y. Huang,“Surfac modification of Al-Zn-Mg alloy by combined electrical discharge machining with ball burnish machining”, International Journal of Machine Tools and Manufacture, 42, No.8 (2002), pp.925-934.
[59] A.C. Wang, B.H. Yan, X.T. Lee and F.Y. Huang,“Use of micro ultrasonic vibration lapping to enhance the precision of microholes drilled by micro electro-discharge machining”, International Journal of Machine Tools and Manufacture, 42, No. 8 (2002), pp.915 -923.
[60] V.K. Gorana, V.K. Jain, G.K. Lal, “Experimental investigation into cutting forces and active grain density during abrasive flow machining”, International Journal of Machine Tools & Manufacture, 44 (2004), pp.201-211.
[61] H. Yamaguchi , T. Shinmura “Study of the surface modification resulting from an internal magnetic abrasive finishing process”, Wear 225–229 (1999), pp.246–255.
[62] S. Jha, V.K. Jain, “Design and development of the magnetorheological abrasive flow finishing (MRAFF) process”, International Journal of Machine Tools & Manufacture, 44 (2004), pp.1019-1029.
[63] S. Singh, H.S. Shan, P. Kumar, “Wear behavior of materials in magnetically assisted abrasive flow machining”, Journal of Materials Processing Technology, 128 (2002), pp.155–161.
[64] V.K. Jain, P. Kumar, P.K. Behera, S.C. Jayswal, “Effect of working gap and circumferential speed on the performance of magnetic abrasive finishing process”, Wear 250 (2001), pp.384–390
[65] T. Kuriyagawa, M. Saeki, K. Syoji, “Electrorheological fluid-assisted ultra-precision polishing for small three-dimensional parts” Precision Engineering, Journal of the International Societies for Precision Engineering and Nanotechnology, 26 (2002), pp.370–380.
[66] R.K. Jain, V.K. Jain, “Optimum selection of machining conditions in abrasive flow machining using neural network”, Journal of Materials Processing Technology, 108 (2000), pp.62-67.
指導教授 顏炳華(Biing-Hwa Yan) 審核日期 2006-6-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明