博碩士論文 91343027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.147.89.85
姓名 吳典黻(Ten-Fu Wu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 熱壓法製造之顆粒強化銅基複合材料磨耗與腐蝕性質之研究
(Wear and Corrosion of Particles Reinforced Copper Metal Matrix Composites Adopted by Hot Pressing)
相關論文
★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 冷加工與熱處理對AA7055鍛造型鋁合金微結構與機械性質的影響★ 冷抽量對AA7055(Al-Zn-Mg-Cu)-T6態合金腐蝕性質和微結構之影響
★ 熱力微照射製作絕緣層矽晶材料之研究★ 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響
★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究
★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究★ Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究
★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響
★ 恆溫蒸發熔煉鑄造製程合成鎂基介金屬化合物及其氫化特性之研究★ 無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響
★ 微量Sc對A356鑄造鋁合金機械性質之影響★ 熱處理對車用鋁合金材料熱穩定性與表面性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 銅及銅合金因具有優良的耐腐蝕性、易加工性、高熱傳導性、高導電性及在低、常溫及中高溫時優良的機械性質等,故已廣泛應用於電子電路的零件及耐磨耗材料。
金屬基複合材料可以結合基材及添加相的優點,以獲得所需的材料性質,如較佳的強度、剛性及耐磨耗性等,其中又以添加顆粒強化相之複合材料因具備較佳的等向性,故常被應用。不過,複合材料常因第二相的存在,導致腐蝕性質的劣化。此外,若材料在腐蝕的環境下進行磨耗,會受到磨耗與腐蝕的交互作用,常導致材料嚴重的損失,亦即,磨耗腐蝕的性質與單獨磨耗或腐蝕性質有相當大的差異。
本論文主要目的係選擇粉末冶金之熱壓法製造銅基複合材料,添加四種不同顆粒(碳化矽、石墨、碳化鎢、鈷)之強化相,期能獲得高緻密度的銅基複合材料,並進一步研究不同複合材料磨耗及腐蝕性質。本研究對添加相的選擇為:碳化矽及碳化鎢可增加材料硬度、石墨可作為磨耗潤滑劑、而鈷則有抗震效果。
本論文採用兩種方式來探討乾磨耗性質,一種是用來回式磨耗試驗機評估添加碳化矽及石墨的銅基複合材料;另一種則使用轉輪磨耗(block-on-ring)方式研究添加碳化鵭及鈷的銅基複合材料。實驗結果顯示,銅/碳化矽複合材料雖硬度較高,其磨耗性質却比純銅差,此外,加入石墨至銅基地中雖大幅降低複合材料硬度,但因為石墨具潤滑效果,反而提升銅/碳化矽/石墨複合材料抗磨耗性。另一方面,添加碳化鎢的銅基複合材料不但硬度提高,同時也表現較好的抗磨耗性質;而添加鈷可進一步提昇磨耗性質。
除了磨耗性質的探討外,本論文並研究銅基複合材料添加不同的顆粒後對腐蝕性質的影響。腐蝕性質測定則分別運用靜態浸漬法測量腐蝕重量損失及電化學法測量腐蝕性質及分析腐蝕機構,腐蝕溶液採用3.5wt%氯化鈉溶液。實驗結果顯示,添加碳化矽使腐蝕重量損失較純銅增加,再添加石墨使重量損失持續增加,此乃因添加相與基地介面易產生間隙腐蝕及添加相與基地間因電位差產生伽凡尼腐蝕所造成。另外,添加碳化鎢的複合材料產生孔蝕使腐蝕性質變差,然而同時添加碳化鎢及鈷則使複合材料重量損失比純銅少,此乃因材料表面形成鈍化膜可扺抗腐蝕;此外,經電化學實驗證明加入第二相至銅基地中將使腐蝕性質變差(腐蝕電流增加),主要的原因亦由於局部腐蝕及伽凡尼腐蝕的影響,導致材料耐腐蝕性質惡化。同時,材料鈍化膜的破裂亦為影響腐蝕性質因素之一。
為了進一步探討磨耗與腐蝕的交互影響,使用銅/碳化鎢/鈷複合材料進行腐蝕環境下(模擬海水)的磨耗試驗,結果發現當處於陰極電位(相對於開路電位)時的磨耗,腐蝕幾乎没發生作用,使得銅基複合材料磨耗損失仍以機械磨耗為主;然而在陽極電位時,由於磨耗與腐蝕產生加成作用,材料磨耗損失隨著外加陽極電位增加而急遽增加。
摘要(英) Copper and copper alloys are well known for a combination of good corrosion resistance in a variety of environments, excellent workability, high thermal and electrical conductivities, and attractive mechanical properties at low, normal and moderately elevated temperatures. Copper and copper alloys thus are widely used in the electronic application and bearing materials. Metal matrix composites combine the advantages of the matrix and reinforcement to obtain the required properties, to increase strength, toughness and anti-wear. Among them, the composites incorporated with particles reinforcement, owing to better isotropic behaviors, were mostly used as bearing materials. However, the presence of foreign phase in composites often results in a worse corrosion behavior. Furthermore, in a wear and corrosion coexistence environment, the composites in general experience severe wear loss. This is due to the synergic effect of wear and corrosion which are more complicated than wear or corrosion alone.
The main object of this thesis is to adopt a hot pressing process, a powder metallurgy route, for manufacturing Cu metal matrix composites (Cu MMCs) with four additional particulates, i.e., SiCp, graphite, WCp and Cop. The experimental results verify the method can acquire high densification, sound composites.
The wear performance of Cu MMCs was studied using two different wear examinations associated with two different composites in this study. The Cu/SiCp/graphite composites uses a reciprocal (back and forth) wear machine while the Cu/WCp/Cop composites uses a block-on-ring wear tester. The sliding tests were performed under ambient conditions and without lubricant. Selection of foreign particles is based on the fact that SiC and WC phases can improve the bulk hardness of composites, graphite is commonly used in bearing Al matrix composites acting as a lubricant, and Co is helpful to increase shock resistant. Traditionally, harder composites exhibit better wear resistance due to their capability to endure contact load from being plastic deformation. By using different wear tests, the harder Cu/SiCp and Cu/WCp composites, indicate different results. The former get worse wear resistance than pure copper, while the later better do. Although graphite lowers hardness of composite, it increases wear resistance since graphite phase can lubricate a contact surface during friction. Besides, the addition of a Cop phase is also beneficial for improving wear resistance of Cu/WCp/Cop composites.
In this work, the corrosion test also executed to identify corrosion behavior after particles were incorporated into a copper matrix. The corrosion measurement in this study includes static weigh loss immersed in a corrosive solution and potentiodynamic polarization. The corrosive solution used in this examination was unified as 3.5 wt. % NaCl at pH 6.7 (simulative sea water). The electrochemical measurements were carried out using a three electrode system. Experimental results demonstrate that the static corrosive wear loss of Cu/SiCp/graphite increases, meanwhile, that of Cu/WCp/Cop composites decreases. Additionally, the mixing of particles into copper matrix depressed the anti corrosion behavior of Cu MMCs. The worse corrosion behavior of Cu MMCs can be explained mainly owing to the local corrosion (crevice and pitting) and the galvanic corrosion, while the influence of broken passive films can be referred to another factor.
The synergistic effect of wear and corrosion was also studied. The test was adopted by taking Cu/WCp/Cop composites for wearing in the same 3.5 wt. % NaCl solution at pH 6.7. The corrosion potential effect on the loss of composites can be concluded as follows: Cu/WCp/Cop composites exhibit a very small wear corrosion rate at a cathodic potential (relative to OCP) because corrosion seems negligible and mechanical wear dominates wear loss of the composites. However, at an anodic potential, the wear corrosion rate dramatically increases with an increase of applied potential owing to a synergistic effect of wear and corrosion.
關鍵字(中) ★ 銅基複合材料
★ 熱壓法
★ 粉末冶金
★ 磨耗
★ 腐蝕
★ 磨耗腐蝕
關鍵字(英) ★ Wear
★ Powder metallurgy
★ Hot-pressing forming
★ Copper metal matrix composites
★ Corrosion
★ Wear corrosion
論文目次 CONTENT
ABSTRACT III
ACKNOLEDGEMENT V
CONTENT VI
TABLE LIST X
FIGURE LIST XI
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 COPPER METAL MATRIX COMPOSITES 5
2.1 The Characteristic of Copper and Copper Alloys 5
2.2 Powder Preparation of Copper Metal Matrix Composites 12
2.3 Documents Review of Recently Copper alloys 26
CHAPTER 3 SELECTION OF MANUFACTURE PROCESS OF COPPER/SiC/GRAPHITE AND COPPER/WC/COBALT COMPOSITES 32
3.1 Motivation 32
3.2 Consideration of Selected Powder Metallurgy Routes 32
3.3 Basic processes and Selection of Powder Metallurgy route 38
3.4 Copper Composites Manufactured by Hot Pressing 47
CHAPTER 4 MICROSTRUCTURES AND HARDNESS OF HOT-PRESSING COPPER/SiC/GRAPHITE AND COPPER/WC/COBALT COMPOSITES 49
4.1 Motivation 49
4.2 Experimental 49
4.2.1 Preparation of Cu-SiC-Graphite-WC-Co powders 49
4.2.2 Procedures of Hot Pressing (including prior techniques) 60
4.2.3 Properties Examinations of Materials 64
4.3 Results and Discussions 65
4.3.1 Densification 65
4.3.2 Microstructure 73
4.3.3 Hardness 75
4.1 Conclusions 79
CHAPTER 5 DRY WEAR BEHAVIORS OF HOT-PRESSING COPPER/SiC/GRAPHITE AND COPPER/WC/COBALT COMPOSITES 80
5.1 Motivation 80
5.2 Introduction of metal wear 80
5.2.1 Types of metal wear 80
5.2.2 Surface damages in sliding wear 82
5.2.3 Some theories about sliding wear of metals 84
5.3 Experimental 91
5.3.1 Materials 91
5.3.2 Dry wear tests 91
5.4 Results and discussions 94
5.4.1 Wear rate and wear volume loss 94
5.4.2 Worn surface observation of wear Cu composites 104
5.5 Conclusions 115
CHAPTER 6 CORROSION BEHAVIORS OF HOT-PRESSING COPPER/SiC/GRAPHITE AND COPPER/WC/COBALT COMPOSITES 116
6.1 Motivation 116
6.2 Introduction of metal matrix composites corrosion 117
6.2.1 Corrosion mechanisms of MMCs 117
6.2.2 Galvanic corrosion [185] 119
6.2.3 Crevice corrosion [185, 189] 121
6.2.4 Polarization and mixed-potential theory 123
6.2.5 Synergism of wear and corrosion 124
6.3 Experimental 126
6.3.1 Materials 126
6.3.2 Electrochemical tests 126
6.3.3 Static corrosion tests 128
6.3.4 Wear corrosion tests 128
6.4 Results and discussions 129
6.4.1 Potentiodymatic polarisation curves 129
6.4.2 Static corrosion loss and corrosion rate 137
6.4.3 Worn surfaces of corrode Cu composites 141
6.4.4 Wear corrosion rate and worn surfaces of Cu/WC/Co composites 147
6.5 Conclusions 156
CHAPTER 7 GENERAL CONCLUSIONS 158
CHAPTER 8 FUTURE WORKS 161
REFERENCES 163
PUBLICATION LIST 174
TABLE LIST
Table 2.1 Electrical resistivity and thermal conductivity of copper and other pure commercial metals at 293 K 5
Table 2.2 Composition of some common copper-base alloys 6
Table 2.3 Properties of Copper Powder Produced by Various Methods 13
Table 2.4 Typical Applications of Brush Materials 24
Table 2.5 Typical Applications for Copper-Containing Brush Materials 26
Table 4.1 composition, densification, and hardness of Copper metal matrix composites fabricated by hot pressing 69
Table 6.1 Galvanic series of some commercial metals and alloys in seawater. [22] 120
Table 6.2 Corrosion potential and corrosion current density of Cu/WCp/Cop composites examined in 3.5%NaCl solution at pH 6.7 134
FIGURE LIST
Figure 2.1 Potential-pH equilibrium for the system copper-water at 25℃ [24, 25] 9
Figure 2.2 Flowsheets for metal atomization process 14
Figure 2.3 Air atomized copper powder-reduced (1000X) SEM 15
Figure 2.4 Water atomized copper powder after reduction and sintering grinding (3000X) SEM 16
Figure 2.5 Dendritic electrolytic copper powder (500X) SEM 17
Figure 2.6 Copper powder milled scale after milling (3000X) SEM 18
Figure 2.7 Hydrometallurgical (Bagdad) copper powders (500X) SEM 20
Figure 2.8 Oxidation of copper [32] 25
Figure 3.1 Schematic diagrams of (a) PM-MMC fabrication steps. (b) The Alcoa process and (c) the Ceracon process. [88] 36
Figure 3.2 Osprey process for deposition of composites [96, 97] 37
Figure 3.3 Possible effects of fine particle additions on the apparent density of an initial coarse particle distribution [103] 40
Figure 3.4 Compressibility curves for atomized and sponge iron powders. Die wall lubrication used. [104] 42
Figure 3.5 General influence of porosity on mechanical properties of sintered compacts made from six different types of iron powder. Compacts were sintered 1 h at 1100℃. [101] 44
Figure 3.6 Three-sphere sintering models. (a)Original point contacts (b) Neck growth (c) and (d) Pore rounding [103] 46
Figure 4.1 Variation of coefficient of friction with graphite content for composites with different base alloys [116-126] 52
Figure 4.2 Variation of wear volume with sliding distance for different aluminium alloy- graphite particle composites and corresponding base alloys [127-133] 53
Figure 4.3 Variation of wear volume with pressure (normal) for copper- graphite particle composites containing 0-20 vol.-% graphite [134] 54
Figure 4.4 Variation of wear rate with sliding speed for Al-Si alloy-graphite particle composites and corresponding base alloys [132, 135] 54
Figure 4.5 SEM photographs of different morphology of three powders (a) Cu (b) SiC (c) graphite 58
Figure 4.6 X-ray diffraction patterns of copper, WCp and Cop powders, in which show the oxides and contaminants free 60
Figure 4.7 Schematic diagram of reduction furnace 61
Figure 4.8 Single and double end compaction 62
Figure 4.9 Schematic diagram show the processes of compaction and hot pressing (a) filled powders and pre-pressed (b) compaction (c) hot pressing, and (d) ejection 63
Figure 4.10 Schematic diagram show the processes of measured bulk densities of composites (a) weight in air (b) weight after oil infiltration (c) weight in water 64
Figure 4.11 Random close packing of a bimodal mixture (ρ=8) with 70% volume of large spheres. Relative density is 0.80 [156] 67
Figure 4.12 Optical micrographs of hot pressed composites 73
Figure 4.13 Tendency of hardness and densification of Cu/SiCp/graphite and Cu/WCp/Cop composites affected by reinforced particles 78
Figure 5.1 Schematic depiction of a wearing system [163]. 81
Figure 5.2 Classification of wear processes. [163] 81
Figure 5.3 Schematic description of the four main wear mechanisms. [163] 82
Figure 5.4 Mechanisms of wear during sliding contact 83
Figure 5.5 Schematic diagrams show Archard’s adhere wearing model.[165] 85
Figure 5.6 A schematic view of the metal being removed under a circular wear track in pin-on-disk type wear tests [166]. 86
Figure 5.7 The process of wear particles formation by the shear deformation of the voids [167]. 86
Figure 5.8 An idealized model for the seizure mechanism. 88
Figure 5.9 Schematic four types of second phase during sliding wear 89
Figure 5.10 Typical wearing curves show different wearing stage [163] 90
Figure 5.11 Schematic illustration of reciprocal wear testing 92
Figure 5.12 Schematic illustration of block-on-ring wear testing 93
Figure 5.13 Wear loss of Cu/SiCp/graphite MMCs plotted as a function of test duration for a constant applied load of 29.4 N (3 kg) in the back and forth wear test 95
Figure 5.14 Tendency of Wear loss vs. hardness of Cu/SiCp/graphite MMCs plotted as a function of sliding distance for 50000 cycles at a constant applied load of 29.4 N, in the reciprocal wear test. 96
Figure 5.15 Wear loss of Cu/WCp/Cop MMCs plotted as a function of sliding distance duration for a constant applied load of 2.1 kg, sliding speed of 0.24m/s in the block on ring test. 98
Figure 5.16 Tendency of Wear loss vs. hardness of Cu/WCp/Cop MMCs plotted as a function of sliding distance duration for a constant applied load of 20.6 N, sliding speed of 0.24m/s in the block on ring test. 102
Figure 5.17 SEM micrographs of worn surfaces of Cu/SiCp/graphite MMCs after 50 000 wear cycles; 106
Figure 5.18 Optical micrographs of worn surfaces of specimen CS (Cu/10SiCp) after different wear cycles. 107
Figure 5.19 Optical micrographs of worn surfaces of specimen CSG7 (Cu/10SiCp/7.5graphite) after different wear cycles. 109
Figure 5.20 Images (SEM) of worn surfaces of Cu/WCp/Cop composites after dry wear: 20.6 N, 200 rev min–1, 700 m; (a) A0, pure copper; (b) A1, Cu/9vol-%WCp, 1μm (c)A3, Cu/9vol-%WCp, 3μm; (d) A6, Cu/9vol-%WCp, 6μm; (e) A9, Cu/9vol-%WCp, 9μm. Red arrow shows the crack occurred on the interface of WCp and matrix 112
Figure 5.21 Images (SEM) of worn surfaces of Cu/WCp/Cop composites after dry wear: 20.6 N, 200 rev min–1, 700 m; (a) B15.5, Cu/15.5vol-%WCp, 6μm; (b) B22, Cu/22vol-%WCp, 6μm; (c) C2, Cu/9vol-%WCp, 6μm/6vol-%Cop, 1.5μm. 114
Figure 6.1 Typical anodic polarization diagram of an active-passive metal [185, 186] 118
Figure 6.2 Schematic diagram of pitting potential decreases with increasing aggressive anion concentration [188] 119
Figure 6.3 A prediction MMCs corrosion behavior by utilizing polarization diagrams and the mixed potential theory [191] 121
Figure 6.4 Crevice corrosion (a) initial stage; (b) later stage [185] 122
Figure 6.5 Schematic diagrams of mixed potential and current density 124
Figure 6.6 Mechanisms involved in tribochemical wear [164] 125
Figure 6.7 Schematic illustrations of potentiodynamic polarisation testing apparatus 127
Figure 6.8 Schematic illustrations of wear corrosion testing apparatus 129
Figure 6.9 Aerated and deaerated measurement of Cu/SiCp/graphite composites (a ) C (b) CS (c) CSG2 (d) CSG5 (e) CSG7 131
Figure 6.10 Potentiodynamic polarisation curve of different Cu/SiCp/graphite MMCs immersed in aqueous 3.5 w.t-% NaCl solution open to the air 133
Figure 6.11 Potentiodynamic polarisation curves for Cu/WCp/Cop composites immersed in 3.5%NaCl solution at pH 6.7 (a) group A; (b) group B;(c) group C 136
Figure 6.12 Corrosion weight losses for Cu/SiCp/graphite MMCs plotted as a function of immersion period in 3.5%NaCl, pH 6.7 138
Figure 6.13 Corrosion rate (mpy) of Cu/SiCp/graphite MMCs plotted as a function of immersion period in 3.5%NaCl, pH 6.7 138
Figure 6.14 Corrosion weight losses for Cu/SiCp/graphite MMCs plotted as a function of immersion period in 3.5%NaCl, pH 6.7 (a) A group (b) B group (c) C group. 140
Figure 6.15 SEM micrographs of corroded surfaces after potentiodynamic polarisation measurement. 142
Figure 6.16 SEM micrographs of corroded surfaces after potentiodynamic polarisation measurement. 143
Figure 6.17 SEM micrographs of corroded surfaces after immersion in 3.5%NaCl, pH 6.7 for 40 days. The arrow shows a depression where SiCp and/or graphite were removed (a) C (Cu) (b) CSG7 (Cu/10SiCp/7.5graphite) 144
Figure 6.18 SEM micrographs of corroded surfaces after potentiodynamic polarisation measurement in 3.5%NaCl, pH 6.7. (a) C1 (Cu/ 9vol.-%WCp 6μm; (b) C2 (Cu/ 9vol.-%WCp 6μm/ 6vol.-%Cop 1.5μm 146
Figure 6.19 Wear corrosion rate versus polarisation potential (vs. open circuit potential, OCP) for Cu/WCp/Cop composites immersed in 3.5%NaCl solution at pH 6.7 148
Figure 6.20 Current densities versus polarisation potential (vs. open circuit potential, OCP) for Cu/WCp/Cop composites immersed in 3.5%NaCl solution at pH 6.7 150
Figure 6.21 Wear corrosion rate versus Cu/WCp/Cop composites for different polarisation potentials (vs. open circuit potential, OCP) immersed in 3.5%NaCl solution at pH 6.7 151
Figure 6.22 Images (SEM) of worn surfaces of Cu/WCp/Cop composites after wear corrosion in 3.5%NaCl solution at pH 6.7:20.6 N, 200 rev min–1, 140 m 155
參考文獻 1. M.Taya and R.J.Arsenault: Metal Matrix Composites—Thermomechanical Behavior, Pergamom Press, Oxford. (1989) 1-5.
2. A.L.Geiger and M.Jackson, Adv. Mater. Process, 7 (1989) 23.
3. A.K.Dhingra, J. Met. 38 (1986) 17.
4. R.C.Forney, ibid. 38 (1986) 18.
5. F.E.Kennedy, A.C.Balbahadur, D.S.Lashmore, ‘The friction and wear of Cu- based silicon carbide particulate metal matrix composites for brake applications’, Wear, 203-204 (1997) 715-721.
6. P. K. Rohatgi, Y. Liu and S. Ray: in ‘ASM handbook’, ‘Friction lubrication and
wear technology’, Materials Park, OH, ASM International. Vol. 18, (1992) 801–811.
7. B.Venfataraman and G. Sundararajan, ‘The sliding wear behavior of Al-Si particulate composites-I.Macrobehaviour’, Acta Mater., 44 (1996) 451-460.
8. B.Venfataraman and G. Sundararajan, ‘The sliding wear behavior of Al-Si particulate composites-II.Macrobehaviour’, Acta Mater., 44 (1996) 461-463.
9. Metals Handbook, 9th. Ed., Powder Metallurgy, Vol.7 (1984) 710-716.
10. J.R.Groza and J.C.Gibeling, Mater. Sci. Eng., A 171 (1993) 115-125
11. A.K.Garg and L.C.De Jonghe, J. Mater. Sci., 28 (1993) 3427-3432.
12. J.D.Verhoeven, F.A.Schmidt, E.D.Gibson, W.A.Spitzig, ‘Copper refractory metal alloys’, J. Metals, September (1986) 20-24.
13. H.L.Downing, J.D.Verhoeven, E.D.Gibson, ‘The emissivity of etched Cu-Nb in situ alloys’, J. Appl. Phys. 61 (7) (1987) 2621-2625.
14. P.D.Funkenbusch, T.H.Courtney, D.G.Kubisch, ‘Fabricability of and microstructure development in cold worked metal matrix composites’, Scripta Metall. 18 (1984) 1099-1104.
15. Z.Chen, P.Liu, J.D.Verhoeven, E.D.Gibson, ‘Sliding wear behavior of deformation-processed Cu-15 vol. % Cr in situ composites’, Wear 195 (1-2) (1996) 214-222.
16. J.P.Tu, L.Meng, M.S.Liu, ‘Friction and wear behavior of Cu-Fe3Al powder metallurgical composites in dry sliding’, Wear, 220 (1998) 72-79.
17. Y.F.Lee, S.L.Lee, C.L.Chuang, J.C.Lin, ‘Effects of SiCp reinforcement by electroless copper plating on properties of Cu/SiCp composites’, Powder Metallurgy, 42 (1999) 147-152.
18. Y.F.Lee, S.L.Lee, J.C.Lin, ‘Wear and corrosion behaviors of SiCp reinforced copper matrix composite formed by hot pressing’, Scandinavian Journal of Metallurgy, 28 (1999) 9-16.
19. G.C.Pratt, Tribology, 6 (1973) 259-261.
20. H.Kato, M.Takama, Y.Iwai, K.Washida, Y.Sasaki, ‘Wear and mechanical properties of sintered copper-tin composites containing graphite or molybdenum disulfide’, Wear, 255 (2003) 573-578.
21. M.R.Piggott, Load bearing fibre composites, Oxford, Pergamon Press, (1980).
22. K.R.Trethewey, J.Chamberlain, ‘Corrosion for students of science and engineering’, John Wiley and Sons, Inc., New York. 134-149.
23. Pierre W. Taubenblat, Copper base powder metallurgy, Metal powder industries federation Princeton, New Jersey 08540, (1980).
24. Pourbaix, M.J.N., Thermodynatics of Dilute Aqueous Solutions (Trans. By J.N. Agar), Edward Arnold, London (1966).
25. Pourbaix, M.J.N., Altas of Electrochemical Equilibria in Aqueous Solutions, Pergamon, Oxford (1966).
26. Vernon, W.H.J., J. Inst. Met., 49 (1932) 153.
27. Vernon, W.H.J. and Whitby, L., J. Inst. Met., 42 (1929) 181; 44(1930) 389; 49 (1932) 153.
28. Vernon, W.H.J., Trans. Faraday Soc. 27 (1931) 255, 582.
29. Hudson, J.C., Trans. Faraday Soc., 25 (1929) 177
30. Bengough, G.D. and May, R., J. Inst. Met., 32 (1924) 81.
31. May, R., J. Inst. Met., 40 (1928) 141.
32. Evans, U.R., Metallic Corrosion Passivity and Protection, Edward Arnold, London (1946); Evans, U.R., The Corrosion and Oxidation of Metals, Edward Arnold, London (1960).
33. Fink, F.W., Trans. Electrochem. Soc., 75 (1939) 441.
34. Lucey. V.F., Brit. Corrosion J. 1, 9, and 53 (1965).
35. Feller, H-G., Z. Metallkunde, 58 (1967) 875.
36. Heidersbach, R., Corrosion, 24 (1968) 38.
37. Lacan, M., Markovic, T. and Rubinic, L., Werkst. U. Korrosion, 10 (1959) 767.
38. Bibliography on Season Cracking, Proc. Amer. Soc. Test. Mater., 41 (1941) 918.
39. Symposium on Stress-corrosion Cracking in Metals, Amer. Soc. Test. Mater., -Amer. Inst. Min. (Metall.) Engrs., Philadelphia (1944).
40. Nelson, G.A., Bull. Amer. Soc. Test. Mat., No 240, (1959) 39.
41. Roberston, W.D., Trans. Amer. Inst. Min (Metall.) Engrs., 191 (1951) 1190.
42. Conference “Copper Alloys in Marine Environments” Birmingham UK, April 1985. Copper Development Association. 20 papers
43. Conference “Marine Engineering with Copper-Nickel” London April 1988. Institute of Metals. 12 papers
44. Parvizi, M.S., Aladjem, A. and Castle, J.E., International Materials Reviews, 33 (1988) 169.
45. Parker, J.G. and Roscow, J.A., Brit. Corrosion J., 16 (1981) 107.
46. Metal Handbook, Amer. Soc. Metals, Metals Park, Ohio, 1, (1961) 983-1005.
47. Rance, V.E. and Evans, U.R., Corrosion and its prevention at bimetallic contacts, H.M.S.O., London (1956).
48. P.W.Taubenblat, Improtance of Copper in Powder Metallurgy – A Review., The International Journal of Powder Metallurgy and Powder Technology, No.3 Vol.10, (1974), p.171.
49. Howling, D.H., and Hoskins, J.M., High speed preparation of dry metal powders, Rev. Scientific Instruments, Vol 37, (1966), 379-380.
50. Lubanska, H., Correlation of spray ring data for gas atomization of liquid metals, Journal of Metals, 22, (1970), 45-49.
51. K.Tarmura and T.Takeda, Manufacture of copper powder by atomization, J. Japan Soc. Powd. Met., 9, (1962), 102.
52. K.Tarmura and T.Takeda, Manufacture of copper powder by atomization, J. Japan Soc. Powd. Met., 11, (1964), 20.
53. F.Wills and E.J.Clugston, Production of electrolytic copper powder, Amax Publication CP-101-R.
54. Tyrrell, H.J.V., Some aspects of the production and heat-treatment of electrolytic copper powder, Jour Inst Metals, 76, (1948), 17-42.
55. Raj, V.P., Acharyulu, S.L.N. and Tamhankar, R.V., Studies on electrolytic preparation of copper-nickel alloy powders, Trans Indian Inst Metals, 23, (1970), 51-57.
56. E.C.Ellwood and W.A.Weddle, J. Inst. Metals, 80 (5), (1952), 193-206.
57. ‘First commercial scale H2 reduction plant for Cu on stream.’, E/MJ, (1967), 97-100.
58. S.R.Dong, J.P.Tu, X.B.Zhang, ‘An investigation of sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes’, Materials Science and Engineering, A313 (2001) 83-87.
59. N.Hamada, S.Sawada, A.Oshiyama, Phys. Rev. Lett. 68 (1992) 1579-1580.
60. J.Broughton, M.P.Pederson, Phys. Rev. Lett. 69 (1992) 2689-2692.
61. D.T.Colbert, J.Zhang, M.Mcclures, Nanotubes Sci. 2266 (1994) 1218-1222.
62. J.P.Tu, L.Meng, M.S.Liu, Wear 220 (1998) 72-79.
63. Yongzhong Zhan, Guoding Zhang, ‘The effect of interfacial modifying on the mechanical and wear properties of SiC/Cu composites’, Materials Letters, 57 (2003) 4583-4591.
64. G.C.Pratt, Tribology 6 (1973) 259-261.
65. H.Shikata, N.Funabashi, Y.Ebine, T.Hayasaka, Mod. Dev. Powder Metall. 17 (1985) 497-512.
66. Hirotaka Kato, Masahiro Takama, Yoshiro Iwai, Kazuo Washida, Yoshinori Sasaki, Wear, 255 (2003) 573-578.
67. Xu Jincheng, Yu Hui, Xia long, Li Xiaolong, Yang Hua, Materials and Design, 25 (2004) 489-493.
68. S.Feliu, M.Morcillo, S.Feliu Jr., Corros. Sci. 34 (1993) 415-422.
69. S.D.Cramer, L.G.McDonald, ASTM-STP 1000, ASTM, Philadelphia, PA, (1990), 241-259.
70. D.Persson, C.Leygraf, J. Electrochem. Soc. 142 (1995) 1459-1468.
71. Antonio R. Mendoza, Francisco Corvo, Corros. Sci. 42 (2000) 1123-1147.
72. Antonio R. Mendoza, Francisco Corvo, Ariel Gomez, Jorge Gomez, Corros. Sci. 46 (2004) 1189-1200.
73. Ch. Kleber, M.Schreiner, Corros. Sci. 45 (2003) 2851-2866.
74. P.K.Rohatgi, D.Nath, J.K.Kim, A.N.Agrawal, Corros. Sci. 42 (2000) 1553-1571.
75. M.Chmielova, J.Seidlerova, Z.Weiss, Corros. Sci. 45 (2003) 883-889.
76. M.Wadsak, T.Aastrup, I.Odnevall Wallinder, C.Leygraf, M.Schreiner, Corros. Sci. 44 (2002) 791-802.
77. Xiaolong Zhu, Tingquan Lei, Corros. Sci. 44 (2002) 67-79.
78. A. Mortensen, J.A.Cornie and M.J.C.Flemings, Met. Trans., 19A, (1988), 709.
79. R.L.Mahar, R.Jakasand and C.A.Bruch, ‘Behavior study of sappire wool, aluminium and Al alloy composite’, Tech. Rep. AFML-TR-68, May (1968).
80. R.Mehrabian, Mater. Res. Soc. Symp. 120, (1988), 3.
81. T.W.Clyne, M.G.Bader, G.R.Cappleman and P.A.Hubert, J. Mater. Sci., 20, (1985), 85.
82. B. Feguson, A. Kuhn, O. D. Smith and F. Hofstatier, Int. J. Powd. Metall. Powd. Tech. 20, (1984), 131.
83. M.S.Newkirk, A.W.Urguhart, H.R.Zwicker and E.Breval. J. Mater. Res., 1, (1986), 81.
84. S.Krishnamurthy, Y-W.Kim, G.Das and F.H.Froes, in ’Metal-Ceramic Matrix Composites: Processing, Modelling and Mechanical Behaviour’, edited by R.B.Bhagat, A.H.Claver, P.Kumar and A.M.Ritter, The Minerals, Metal/Materials Society, Warrendale, PA, (1990), 145.
85. G.Elkabir, L.K.Rabenberg, C.Persad and H.L.Marcus, Scripta Metall. 20, (1986), 1411.
86. P.K.Rohatgi, R.Jakasand and S.Das, Int. Met. Rew. 31 (1986) 115.
87. T.Donomoto, N.Miuras, K.Funatani and N.Miyake, SAE Technical Paper no. 83025, Detroit, MI, (1983).
88. I.A.Ibrahim, F.A.Mohamed, E.J.Lavernia, ‘Particulate Reinforced Metal Matrix Composites-A Review’, Journal of Material Science, 26 (1991) 1137-1156.
89. J.Weinstein, in Proceedings of the International Symposium on Advances in Processing and Characterization of Ceramic Metal Matrix Composites, CIM/ICM, Vol. 17, edited by H. Mostaghaci, Pergamon, Oxford, (1989),132.
90. A.L.Geiger and M.Jackson, Adv. Mater. Process, 7 (1989) 23.
91. H.J.Rack, in ‘Processing and Properties of Powder Metallurgy Composites’, edited by P.Kumer, K.Vedula and A.Ritter, The Metallurgy Society, Warrendale, PA, (1988), 155.
92. H.J.Rack, in ‘Processing of the 6th International Conference on Composites Materials’, edited by F.L.Matthews, N.C.R.Buskell, J.M.Hodgkinson and J.Morton ,Elsevier Applied Science, London, (1987), 382.
93. W.H.Hunt, Jr., C.R.Ccck, K.P.Amanie and T.B.Gurganus, in ‘Powder Metallurgy Composites’, edited by P.Kumer, A.Ritter and K.Vedula, The Metallurgical Society, Warrendale, PA, (1987).
94. H.J.Rack, in ‘Dispersion Strengthened Aluminium Alloys’, edited by Y.M.Kim, and W.Griffith, The Metallurgical Society, Warrendale, PA, (1988).
95. C.Persad, S.Raghnathan, B.H.Lee, D.L.Bourell, Z.Eliezer and H.L.Marcus, Mater. Res. Soc. Symp. Proc. 120 (1988) 23.
96. T.O.Willis, Metals and Materials, 4 (1988) 485.
97. J.White, I.G.Palmer, I.R.Hughes and S.A.Court, in ‘Aluminum-Lithium Alloys Ⅴ’, edited by T.H.Sanders, Jr. and E.A.Starke, Jr. ,MCE Publication, Williamsburg, VA (1989), 1635.
98. R.Mehrabian, R.G.Riek and M.C.Flemings, Met. Trans. 5 (1974) 1899.
99. E.F.Fascetta, R.G.Riek, R.Mehrabian and M.C.Flemings., Trans. AFS, 81 (1973) 81.
100. R.Seelig and J.Wulff, Trans. AIME, 166 (1946) 492-504.
101. A.Squire, Trans. AIME, 171 (1947) 485-505.
102. K.Vedula and R.Heckel, Morden Dev. In P/M, 12 (1981) 759-777.
103. J.S.Hirschhorn, ‘Introduction to Powder Metallurgy’, Amer. Powder Met. Inst., Princeton, NJ, (1969).
104. Erhard Klar, ‘Powder Metallurgy: Applications, Advantages and Limitations’, American Society for Metals, Metals Park, Ohio 44073.
105. B.N.Pramila Bai, B.S.Ramasesh, M.K.Surappa, ‘Dry sliding wear of A356-Al-SiCp composites’, Wear 157 (1992) 295-304.
106. A.T.Alpas, J.D.Embury, ‘Sliding and abrasive wear resistance of an aluminum (2014)-SiC particle reinforced composite’, Scripta Metall. Mater. 24 (1990) 931-935.
107. S.J.Lin, K.S.Liu, ‘Effect of aging on abrasion rate in an Al-Zn-Mg-SiC composite’, Wear 121 (1988) 1-14.
108. J.Yang, D.D.L.Chung, ‘Wear of bauxite particle reinforced aluminum alloys’, Wear 135 (1989) 969-983.
109. A.T.Alpas, J.Zhang, ‘Effect of microstructure (particle size and volume fraction) and counterface materials on the sliding wear resistance of particulate-reinforced aluminum matrix composites’, Metall. Mater. Trans. A 25 (1994) 969-983.
110. W.Ames, A.T.Alpas, ‘Wear mechanisms in hybrid composites of graphite-20pct SiC in A356 aluminum alloy (Al-7 pct Si-0.3 pct Mg)’, Metall. Mater. Trans. A 26 (1995) 85-98.
111. Mingwu Bai, Qunji Xue, Huifang Guo, ‘Reciprocal sliding wear of SiC particle reinforced Al-Cu aluminum matrix composites against stainless steel, high speed tool steel and ceramics- I. Tribological properties and construction of tribo-maps’, Wear 195 (1996) 152-161.
112. Z.Hang, A.T.Alpas, ‘Wear regimes in ceramic particulate reinforced aluminum alloys’, Proceedings of the ASM 1993 Materials Congress, Materials Week’93, Pittsburgh, Pennsylvania, October (1993) 17-21.
113. S.Wilson and A.Ball, ‘Wear resistance of an aluminum matrix composite’, in P.K.Rohatgi, P.J.Blau and C.S.Yust (eds.), Tribology of Composite Materials, ASM, Materials Park (1990) 103-112.
114. Yongzhng Zhan, Guoding Zhang, ‘The effect of interfacial modifying on the mechanical and wear properties of SiCp/Cu composites’, Materials Letters 57 (2003) 4583-4591.
115. W.L.Bragg, ‘Introduction to crystal analysis’, 64, 1928, London, Bell and Son.
116. P.R.Gibson, A.J.Clegg, and A.A.Dos, Wear 95 (1984)193.
117. J.K.Lancastre: in ‘New directions in lubrication, materials, wear and surface interaction’-Tribology in the 80’s, (ed. W.R.Loomis), New Jersey, Noyes Publications (1983) 320.
118. S.Dillich and D.Kuhlmann-Wilsdorf, Mater. Sci. Eng., 57 (1983) 213.
119. L.M.Rybakove and L.I.Kuksenova, Sov. Eng. Res., 5 (1985) 9.
120. P.K.Rohatgi, Y.Liu, and T.L.Barr, Mater. Sci. Eng., A123 (1990) 213.
121. P.K.Rohatgi, Y.Liu, and T.L.Barr, Metall. Trans., 22A (1991) 1435.
122. E.Yuasa, T.Morooka, and F.Hayama, J. Jpt Inst. Met., 50 (1986) 1032.
123. L.B.Johnson, Jr and D.Kuhlmann-Wilsdorf, Mater. Sci. Eng., 58 (1983) 4.
124. M.Kawamoto and K.Okabayashi, Wear 58 (1980) 59.
125. Y.Tsuya, J. Jpt Inst. Compos., 11 (1985) 127.
126. K.C.Owen, M.J.Wang, C.Persad and Z.Eliezer, Wear 120 (1987) 117.
127. M.Kawamoto, M.Adach, S.Ando, and K.Okabayashi, Imono (J. Jpn Foundrymen’s Soc.) 50 (1978) 32.
128. H.F.Barry and J.P.Binkelman, Lubr. Eng., 22 (1966) 139.
129. M.Muran and M.Sranaek, Kivove’ Mater., 23 (1985) 107.
130. M.Suwa, K.Komuro, and K.Soeno, J. Jpt Inst. Met., 40 (1976) 1074.
131. S.K.Biswas and B.N.Pramilabal, Wear 68 (1981) 347.
132. W.K.Choo and C.H.Hong, J. Korean Inst. Met., 17 (1979) 474.
133. A.K.Jha, S.V.Prasad, and G..S.Upadhyaya, Wear 133 (1989) 163.
134. M. Suwa, ‘Hitachi graphite-dispersed cast alloy-Gradia’, Internal Report, Hitachi, Japan (1986).
135. E.Yuasa, T.Morooka, and F. Hayama, J. Jpt Inst. Met., 50 (1986) 1032.
136. P.K.Rohatgi, Y.Liu and T.L.Barr: in ‘Tribology of composite materials’, (ed. P.K.Rohatgi et al.); Materials Park, OH, ASM International (1990) , 113.
137. A.W.Ruff and M.B.Peterson: ‘Tribology of composite materials’, (ed. P.K.Rohatgi et al.); Materials Park, OH, ASM International (1990) , 43 .
138. R.M.Greenwood, M.H.Loretto, and R.E.Smallman, Acta Metall., 30 (1982) 1193-1196.
139. M.K.Hibbs and R.Sinclair, Acta Metall., 29 (1981) 1645-1654.
140. S.Hagege, J.Vicens, G.nouet, and P.Delavignette, Phts. Status Solidi., 61 (1980) 675-687.
141. V.Jayaram, R.Sinclair, and D.J.Rowcliffe, Acta Metall., 31 (1983) 373-378.
142. M.K.Hibbs, R.Sinclair, and D.J.Rowcliffe, Acta Metall., 32 (1984) 941-947.
143. R.C.Gassmann, Mater. Sci. Tech. 12 (1996) 691-696.
144. B.Mill, J. Mater. Proc. Tech. 56 (1996) 16-23.
145. B.Champagne, R.Angers, M.Fiset, Int. J. Refr. Met. Hard Mater. 9 (1987) 155-160.
146. R.Angers, D.Dube, B.Champagne, Int. J. Refr. Met. Hard Mater. 9 (1988) 149-151.
147. H.Wang, W.Xia, Y.Jin, Wear 195 (1999) 47-52.
148. D.A.Steward, P.H.Shipway, D.G. McCartney, Surface Coating Tech. 105 (1998) 13-24.
149. Lin Wang, Jian-Lin Shi, Zi-Le Hua, Jian-Hua Gao, Dong-Sheng Yan, Materials Letter, 50 (2001) 179-182.
150. A.Daoud, M.T.Abou-Elkhair. P.Rohattgi, Composites Science and Technology, 62 (2004) 1029-1040.
151. S.F.Moustafa, Z.Abdel-Hamid, A.M.Abd-Elhay, “Copper matrix SiC and Al2O3 particulate composites by powder metallurgy technique”, Materials Letter, 53 (2002) 244-249.
152. H.J.RACK: Adv. Mater. Manuf. Proc., 3 (1988) 327.
153. German RM, editors. Particle packing characteriatics. NJ: Metal Powder Industries Federation; (1989). 404-407.
154. Epstein N, Young MJ. ‘Random loose packing of binary mixture of spheres’, Nature 196 (1962) 885-886.
155. McGeary RK. ‘Mechanical packing of spherical particles’, Journal of American Ceramic Society. 44 (1961) 513-522.
156. C.L.Martin, D. Bouvard, ’Isostatic compaction of bimodal powder mixtures and composites’, International Journal of Mechanical Sciences, 46 (2004) 907-927.
157. A.Mortensen and S.Suresh, ‘Funtionally graded metals and metal-ceramic composites: part1 processing’, International Materials Reviews, 40 (1995) 239.
158. Metal Handbook, 9th edn., Vol. 7, American Society for Metals, (1984), 710-716.
159. A.K.Garg, L.C.De Jonghe, J. Mater. Sci. 28 (1993) 3427.
160. A.Upadhyaya, G.S. Upadhyaya, Mater. Des. 16 (1995) 41.
161. B.R.Zahran, J.H.M.Ibrahim, G.H.Sedahmed, ‘The corrosion of graphite/copper composites in different aqueous environments’, Materials Letter, 28 (1996) 237-244
162. R.Chen, A.Iwabuchi, T.Shimizu, H.S.Shin, H.Mifune ‘The sliding wear resistance behavior of NiAl and SiC particles reinforced aluminum alloy matrix composites’, wear, 213, (1997), 175-184.
163. Karl-Heinz Zum Gahr, Microstructure and wear of materials, Chapter 4 Classification of wear process, Elsevier Science Publisher, Amsterdam, The Netherlands, (1987) 80-131.
164. Karl-Heinz Zum Gahr, Microstructure and wear of materials, Chapter 6 Sliding wear, Elsevier Science Publisher, Amsterdam, The Netherlands, (1987) 351-495.
165. Archard J.F., ‘Contact and Rubbing of Flat Surfaces,’ J. Appl. Phys. 24 (1953) 981-988.
166. Nam P. Suh, ‘The delamination theory of wear’, Wear, 25 (1973) 111-124.
167. Nam P. Suh, ‘An overview of the delamination theory of wear’, Wear, 44 (1977) 1-16.
168. D. Tabor, Proc. R. Soc., Ser. A 251 (1959) 378.
169. S.C. Lim and M.F. Ashby, ‘Overview No.55 Wear-mechanism maps’, Acta. Metal. 35 (1), (1987) 1-24.
170. ‘Wear testing’, Metals Handbook 9th, American Society for Metals, vol.8, (1985), 601-608.
171. A.Krell, ‘Improved hardness and hierarchic influences on wear in submicron sintered alumina’, Materials Science and Engineering, A209 (1996) 156-163.
172. K.H.Zum Gahr, R.Telle, B.Zimmerlin and S.H.Park, ‘The influence of grain size on the mechanical properties and unlubricated sliding wear of Al2O3 ceramics’ (in German), Mat.-wiss, u. Werkstofftech., 23 (1992) 329-338.
173. A.K.Mukhopadhyay and Y.W.Mai, ‘Grain size effect and abrasive wear mechanisms in alumina ceramics’, Wear, 162-164A, (1993) 269-273.
174.S.J.Cho, H.Moon, B.J.Hockey and S.M.Hsu, ‘The transition from mild to severe wear in alumina during sliding’, Acta Metall. Mater., 40 (1992) 185-192.
175. B.J.Hockey, ‘Observation by transmittion electron microscopy on the subsurface damage produced produced in aluminium oxide by mechanical polishing and grinding’, Proc. Brit. Ceram. Soc., 20 (1972) 95-115.
176. W. Simm, S. Freti, ‘Abrasive wear of multiphase materials’, Wear, 129, (1989), 105-121.
177. A.R.Trueman, D.P.Schweinsberg, G.A.Hope, ‘A study of the effect of cobalt additions on the corrosion of tungsten carbide/carbon steel metal matrix composites’, Corrosion Science, 41 (1999), 1377-1389.
178. A.T.Alpas, H.Hu, J. Zhang, Wear, 188 (1993) 162-164.
179. M. Bai, Q. Xue and H. Guo: ‘Reciprocal sliding wear of SiC particle reinforced Al-Cu aluminum matrix composites against stainless steel, high speed tool steel and ceramics. I:Tribological properties and construction of tribo-maps’. Wear, 195, (1996), 152–161.
180. S. Y. Yu, H. shii, K. Tohgo, Y. T. Cho and D. F. Diao: ‘Temperature dependence
of sliding wear behavior in SiC whisker or SiC particulate reinforced 6061
aluminum alloy composite’. Wear, 213, (1997), 21–28.
181. Y. Liu, P. K. Rohatgi and S. Ray: ‘Tribological characteristics of aluminum–50 vol-% graphite composite’. Metall. Trans. A, 24A, (1993), 151–159.
182. B. K. PRASAD: ‘Dry sliding wear response of some bearing alloys as influenced by the nature of microconstituents and sliding conditions’. Metall. Mater. Trans. A, 28A, (1997), 809–815.
183. A. Sandt and Krey: Schweissen Schneiden, C 38, (1986), 163–168.
184. A.Jokinen,P.Anderson, ’Tribological properties of PM aluminum alloy matrix composites’, Powder Metallurgy, (1990) , 517-530.
185. M.G..Fontana and N.D.Greene: ‘Corrosion engineering’, 2nd edn, (1978), New York, McGraw-Hill.
186. P.J.Gellings: ‘Introduction to corrosion prevention and control for engineering’; (1976), Delft, Delft University Press.
187. H.H.Uhlig and R.W.Revie: ‘Corrosion and corrosion control’, 3rd edn.; (1985), New York, Wiely.
188. J.R.Galvele: in ‘Passivity of metals’, (ed. R.P.Frankenthal and J.Kruger), 285-327; (1978), Princeton, NJ, The Electrochemical Society.
189. K.R.Trethewey and J.Chamberlain: ‘Corrosion-for students of science and engineering’, (1988), Longman Science and Technology, Longman house, Harlow, England.
190. P. Jinturkar, Y. C. Guan and K. N. Han: ‘Dissolution and corrosion inhibition of copper, zinc, and their alloys’, Corrosion, 54, (1998) 106–114.
191. L. H. Hihara and R. M. Latanision: ‘Corrosion of metal matrix composites’. Int. Mater. Rev., 39, (1994), 245–264.
192. P. C. R. Nunes and L. V. Ramanathan: Corrosion, 51 (1995) 610–617.
193. M. M. Buarzaiga and S. J. Thorpe: Corrosion, 50, (1994) 176–185.
194. A. W. Batchelor and G. W. Stschowiak: Wear, 123, (1988) 281–291.
195. D. Kotlyar, C. H. Pitt and M. E. Wadsworth: Corrosion, 44, (1988) 221–228.
196. R. E. J. Noel and A. Ball: Wear, 87, (1983) 351–361.
197. K. Fang, C. C. Huang and T. H. Chuang: Metall. Mater. Trans. A, 30A, (1999), 643–651.
198. H. Y. Bi, X. X. Jiang and S. Z. Li: Wear, 225–229, (1999) 1043–1049.
199. X. X. Jiang, S. Z. Li, D. D. Tao and J. X. Yang: Corrosion, 49, (1993) 836–841.
200. B. W. Madsen: Wear, 123, (1988) 127–142.
指導教授 李勝隆(Sheng-Long Lee) 審核日期 2005-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明