博碩士論文 91521014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:65 、訪客IP:3.138.69.153
姓名 蔡昌孝(Chang-Hsiao Tsai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 抗雜訊之邏輯元件設計與實現
(Design and Implementation of Low Jitter Logic Blocks)
相關論文
★ 低雜訊輸出緩衝器設計及USB2實體層的傳收器製作★ 低雜訊輸出緩衝器設計及USB2實體層的時脈回復器製作
★ 應用於通訊系統的內嵌式數位訊號處理器架構★ 應用於數位儲存示波器之100MHz CMOS 寬頻放大器電路設計
★ 具有QAM/VSB模式的載波及時序回復之數位積體電路設計★ 應用於通訊系統中數位信號處理器之模組設計
★ 應用於藍芽系統之CMOS射頻前端電路設計★ 具有QAM/VSB 模式之多重組態可適應性等化器的設計與實現
★ 適用於高速通訊系統之可規劃多模式里德所羅門編解碼模組★ 應用於橢圓曲線密碼系統之低複雜性有限場乘法器設計
★ 適用於通訊系統之內嵌式數位訊號處理器★ 雷射二極體驅動電路
★ 適用於通訊系統的內嵌式數位信號模組設計★ 適用在通訊應用之可參數化內嵌式數位信號處理器核心
★ 一個高速╱低複雜度旋轉方法的統一設計架構:角度量化的觀點★ 5Gbps預先增強器之串列連結傳收機
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本篇論文,我首先分析數位電路的時間抖動特性,且將抖動的成因分成四類:包含了電源訊號的抖動,基板的雜訊,時脈的不穩定性,還有輸入資料相關聯性的抖動。
我們在經常使用的資料暫存器與多工器中提出了一種較少時間抖動的架構,再加上調整尺寸與佈局方式可以降低時間抖動。一般我們量測到在輸出波形的時間抖動的量值都是由數種時間抖動的成因組成。針對資料暫存器,我們提出了一個可以累積除了時脈不穩定性因素外的所有成因造成的時間抖動量值之電路架構,由此電路我們可以在輸出波形處,量測到大部分是由除了時脈不穩定性因素外的所有成因造成的時間抖動量值。我們使用台積電0.18微米製程並針對抗雜訊加以設計模擬的結果,對於資料暫存器峰對峰的時間抖動量值只有1.17兆秒,對於多工器峰對峰的時間抖動量值只有0.04兆秒。
摘要(英) In the thesis, we first analyze the jitter of digital circuits. We divide the jitter source into four categories: vdd / gnd bounce jitter, substrate noise jitter, data dependent jitter, and clock jitter.
For the frequently used flip-flop and MUX, we propose an architecture that has the least jitter. Also, sizing and layout techniques are used to decrease the jitter. In general, the measurement results of output waveform jitter consists of several kinds of jitter. For the D-flip-flop we propose an architecture that could accumulate the output jitter, except for clock jitter so that the output waveform mainly consist of output jitter, except for clock jitter. Design results show that the low-jitter architecture can achieve only 1.17ps and 0.04ps (peak-peak) for D-flip-flop and MUX respectively, using TSMC 0.18um CMOS technology.
關鍵字(中) ★ 時間抖動 關鍵字(英) ★ jitter
論文目次 Chapter 1 Introduction 1
1.1 Introduction of High-Speed / Low Jitter Digital Design Technology 1
1.2 Motivations and Goals 3
1.3 Thesis Organization 3
Chapter 2 Jitter Analysis and Source of Jitter 5
2.1 Random Jitter and Deterministic Jitter 5
2.2 Jitter Analysis 6
2.3 Source of Jitter in Digital Logic Circuits 8
Chapter 3 Low Jitter TSPC D-flip-flop 11
3.1 D-flip-flop Overview 11
3.2 Analysis and Comparisons of TSPC D-flip-flops 14
3.3 Low Jitter TSPC D-flip-flop 17
3.3.1 Input Data Dependent Jitter Effect on TSPC Output Jitter 17
3.3.2 Clock Jitter Effect on TSPC Output Jitter 27
3.3.3 Vdd / Gnd Bounce Effect on TSPC Output Jitter 31
3.3.4 Substrate Noise Effect on TSPC Output Jitter 32
3.4 The Design, Implementation, and Result of The Circuit 33
Chapter 4 Low Jitter MUX 41
4.1 MUX Overview 41
4.2 Analysis and Comparisons of MUX21 and MUX41 45
4.3 Low Jitter MUX 50
4.3.1 Data Dependent Jitter Effect on MUX Output Jitter 50
4.3.2 Vdd / Gnd Bounce Effect on MUX Output Jitter 52
4.3.3 Substrate Noise Effect on MUX Output Jitter 53
4.4 Summary 55
Chapter 5 Conclusions 56
Reference 57
參考文獻 [1] Ji-Ren Y., Karlsson I., and C. Svensson, "A true single-phase-clock dynamic CMOS circuit technique", IEEE J. Solid-State Circuits, Vol22, pp.899-901, Oct 1987.
[2] Fiber Channel.Methodologies for jitter Specification, T11.2/Project 1230/Rev 10, June. 1999.
[3] M. Shimanouchi, "An approach to consistent jitter modeling for various jitter aspects and measurement methods", Proceedings. International Test Conference, pp.848-857, Nov. 2001.
[4] J. Yuan and C. Svensson, "New single-clock CMOS latches and flipflops with improved speed and power savings", IEEE J. Solid-State Circuits, Vol32 , pp.62-69, Jan. 1997.
[5] C. Piguet, “Logic circuit for bistable d-dynamic flip-flop.”, United States Patent, NO.4,057,741, November 1997.
[6] Gorre Verlag Konstanz Hartung., “The Design of High.Speed Dynamic CMOS Circuits for VLSI ,” Robert Rogenmoser, 1996.
[7] J. Yuan and C. Svensson, "Pushing the limits of standard CMOS", IEEE Spectrum, Vol28, pp.52-53, Feb. 1991
[8] H. Oguey and E. Vittoz, “CODYMOS Frequency dviders achive low power consumption and high frequency.” Electronic Letter, pp.386-387, August 1973.
[9] R. Rogenmoser, Q. Huang, F. Piazza, "1.57 GHz asynchronous and 1.4 GHz dual-modulus 1.2 μm CMOS prescalers" , IEEE Proceedings Custom Integrated Circuits Conference, pp.387-390, May 1994.
[10] R. Rogenmoser, N. Felber, Q. Huang, and W. Fichtner, "1.16 GHz dual-modulus 1.2 μm CMOS prescaler", IEEE Proceedings Custom Integrated Circuits Conference, pp.27.6.1-27.6.4 , May 1993
[11] B.Razavi,"Design of Integrated Circuits for Optical Communications," Mcgraw-hill publishers, 2003.
指導教授 周世傑(Shyh-Jye Jou) 審核日期 2004-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明