博碩士論文 91521017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.236.96.157
姓名 林崇元(Chung-Yuan Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 利用階層式特徵擷取及融合之視訊切割演算法
(A Video Segmentation based on Hierarchical Features Extract and Merge for Multimedia Application)
相關論文
★ 即時的SIFT特徵點擷取之低記憶體硬體設計★ 即時的人臉偵測與人臉辨識之門禁系統
★ 具即時自動跟隨功能之自走車★ 應用於多導程心電訊號之無損壓縮演算法與實現
★ 離線自定義語音語者喚醒詞系統與嵌入式開發實現★ 晶圓圖缺陷分類與嵌入式系統實現
★ 補償無乘法數位濾波器有限精準度之演算法設計技巧★ 可規劃式維特比解碼器之設計與實現
★ 以擴展基本角度CORDIC為基礎之低成本向量旋轉器矽智產設計★ JPEG2000靜態影像編碼系統之分析與架構設計
★ 適用於通訊系統之低功率渦輪碼解碼器★ 應用於多媒體通訊之平台式設計
★ 適用MPEG 編碼器之數位浮水印系統設計與實現★ 適用於視訊錯誤隱藏之演算法開發及其資料重複使用考量
★ 一個低功率的MPEG Layer III 解碼器架構設計★ 具有高品質反量化演算的AAC解碼器 之平台式設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 對於以內容為主的資訊擷取的需求愈來愈高時,以畫面為主的傳統方法以不適用。新的多媒體應用正朝向基於以物件為主的視訊,一個視訊序列指包含人們感興趣的前景部分而沒有背景的部分來支援更靈活的應用。 例如 MPEG-7已經定義出提供使用者依據物件形狀作視訊資料搜尋的標準,而在MPEG-4 中也訂定了內容性應用(content-based)的功能,它將連續的影片拆分成一到數個影像物件平面(video object planes),簡稱VOP’s ,每個VOP 代表各一個移動的物件,如此一來可以對他們加以重新組合成一部新的影片或者針對他們的形狀去作壓縮處理。由此可知,發展出能從一般影片擷取出物件的技術是非常重要的。
在這篇論文裡,我們提出以區域為主的視訊切割演算法。我們利用不同尺寸的型態學特徵擷取及高階統計來分割影像中的物件。不同尺寸的形態學特徵擷取考慮特徵的尺寸和對比。而高階統計則非常適用於偵測動量為小的物件,以判斷是否遵守高斯分布來擷取移動資訊。根據實驗結果,這種方法對不同種類視訊都能提供不錯的結果。
摘要(英) As the demand for content-based information retrieval goes high, traditional “frame”-based videos are not adequate. Novel multimedia applications are looking for object-based video, a video sequence has only one object without background, to support flexible utilization. For instance, MPEG-7 (Moving Picture Experts Group) has defined standardized functionality that allows users to search visual content according to object shapes. Meanwhile, MPEG-4 video standard verification model includes the content-based functionality to decompose a video sequence into one or several video object planes (VOP’s), so that each VOP represents one moving object, and they can be recomposed as a new video sequence or be compressed according to their shapes. Therefore, to develop the technique of extracting objects from plain videos is very important.
In this thesis, we proposed a region-based segmentation algorithm. It is based on multiscale morphological feature extraction followed by a higher order statistical test ( HOS ). Multiscale morphological features extraction, which takes the feature size and contrast into account for region extraction. The HOS algorithm is suited for very small moving because of the characterization, that suppress the statistic of Gaussian-distributed and enlarge the statistic of Non-Gaussian-distributed.video. It provided reasonable VOP extract procedure without simplification step and suit for very small moving objects extraction. Experimentally, this method provides good results on different kinds of sequences.
關鍵字(中) ★ 高階統計
★ 視訊切割
★ 型態學濾波器
關鍵字(英) ★ video segmentation
★ higher order test
★ morphological filter
論文目次 ABSTRACT
CONTENTS
LIST OF FIGURES
CHAPTER1. Introduction…………………………………..1
1.1 Motivation and objective…………………………………………………….1
1.1.1 MPEG-4 standard……………………………………………………….2
1.1.2 MPEG-7 standard……………………………………………………….4
1.2 Video segmentation………………………………………………………….5
1.3 Thesis organization…………………………………………………………..7
CHAPTER2. Background and relative research…………...9
2.1 Background…………………………………………………………………..9
2.2 Relative research……………………………………………………………12
2.2.1 Region-based combine motion field approach…………………………12
2.2.2 Region-based combine change detection approach…………………….13
2.2.3 Edge-based combine motion field approach……………………………14
2.2.4 Clustering approach…………………………………………………….15
2.2.5 Semiautomatic approach………………………………………………..15
CHAPTER3. Proposed video segmentation algorithm……16
3.1 Overview of proposed algorithm……………………………………………..16
3.1.1 Design strategy………………………………………………………….. 16
3.1.2 Flowchart of proposed algorithm…………………………………………17
3.2 Multiscale feature extraction…………………………………………………..19
3.2.1 Mathematic morphological operation…………………………………….19
3.2.2 Multiscale feature extraction flow………………………………………..26
3.2.3 Fast implementation………………………………………………………29
3.3 Higher order test………………………………………………………………33
3.3.1 background Gaussian model……………………………………………...33
3.3.2 Higher order statistical……………………………………………………34
3.3.3 Motion regularization……………………………………………………..36
3.4 Hierarchical decision…………………………………………………………..39
3.4.1 Hierarchical video model…………………………………………………39
3.4.2 Region process……………………………………………………………40
3.4.3 Implementation and flowchart……………………………………………42
CHAPTER4. Experiment result…………………………….45
4.1 Video segmentation result…………………………………………………….45
4.1.1 Subjective view of segmentation result………………………………….46
4.1.2 Segmentation result discussion…………………………………………..55
4.2 Run-time analysis………………………….………………………………….56
CHAPTER5. Conclusion…………………………………….59
REFERENCE
參考文獻 [1] MPEG Video Group, “The MPEG-4 video standard verification model version15.0,” ISO/IEC JTC 1/SC 29/WG 11 N3093
[2] MPEG, MPEG-7: Applications document, Tech. Rep. ISO/IEC
JTC1/SC29/WG11/w2860, MPEG, Vancouver, Canada, July 1999.
[3] P. Salembier, F. Marques,”Region-Based Representations of Image and Video: Segmentation Tools for Multimedia Services,” IEEE Trans. Circuits Syst. Video Technol., vol. 9, no. 8, pp. 1147–1169, Dec. 1999.
[4] T. Aach and A. Kaup, “Statistical model-based change detection in moving video,” Signal Processing., vol. 31, pp. 165–180, 1993.
[5] A. Smolic´, T. Sikora, and J.-R. Ohm, “Long-term global motion estimation and its application for sprite coding, content description and segmentation,” IEEE Trans. Circuits Syst. Video Technol., vol. 9, pp. 1227–1242, Dec. 1999.
[6] L. Vincent and P. Soille, “Watershed in digital spaces: An efficient algorithm based on immersion simulations,” IEEE Trans. Pattern Anal. Machine Intell., vol. 13, pp. 583–598, June 1991.
[7] J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, pp. 679–698, Nov. 1986.
[8] J. C. Choi, S.-W. Lee, and S.-D. Kim, “Spatio-temporal video segmentation using a joint similarity measure,” IEEE Trans. Circuits Syst. Video Technol., vol. 7, pp. 279–286, Apr. 1997.
[9] D. Wang, “Unsupervised video segmentation based on watersheds and temporal tracking,” IEEE Trans. Circuits Syst. Video Technol., vol. 8, pp. 539–546, Sept. 1998.
[10] Munchurl Kim, Jae Gark Choi, Daehee Kim, Hyung Lee, Myoung Ho Lee, Chieteuk Ahn, and Yo-Sung Ho, “A VOP generation tool: automatic segmentation of moving objects in image sequences based on spatial-temporal information,” IEEE Transactions on Circuit and Systems for Video Technology, vol. 9, no. 8,pp.1216-1226, December 1999.
[11] Thomas Meier and King N. Ngan, “Automatic segmentation of moving objects for video object plane generation,” IEEE Transactions on Circuit and Systems for Video Technology, vol. 8, no. 5, December 1998.
[12] Thomas Meier and King N. Ngan, “Video segmentation for content-based coding,” IEEE Transactions on Circuit and Systems for Video Technology, vol. 9, no. 8, December 1999.
[13] Changick Kim and Jenq-Neng Hwang,”Fast and Automatic Video Object Segmentation and Tracking for Content-Based Applications,” IEEE Transactions on Circuit and Systems for Video Technology, vol. 12, no. 2, February 2002.
[14] J. Kim and T. Chen, “Low-complexity fusion of intensity, motion, texture and edge for image sequence segmentation: A neural network approach,” in IEEE Int. Workshop Neural Networks for Signal Processing, Sydney, Australia, Dec. 2000, pp. 497–606.
[15] J. Kim and T. Chen, “Multiple feature clustering for image sequence segmentation,” Pattern Recognit. Lett., vol. 22, pp. 1207–1217, Sept. 2001.
[16] Daniel Gatica-Perez, Chuang Gu, and Ming-Ting Sun,”Semantic Video Object Extraction Using Four-Band Watershed and Partition Lattice Operations,” IEEE Transactions on Circuit and Systems for Video Technology, vol. 11, no. 5, May 2001.
[17] Daniel Gatica-Perez, Chuang Gu, and Ming-Ting Sun,”Multiview Extensive Partition Operations for Semantic Video Object Extraction,” IEEE Transactions on Circuit and Systems for Video Technology, vol. 11, no. 7, May 2001.
[18] F. Meyer and S. Beucher, “Morphological segmentation,” J. Visual Commun. Image Representation, vol. 1, pp. 21–46, Sept. 1990.
[19] Luc Vincent,”Morphological Grayscale Reconstruction in Image Analysis: Application and Efficient Algorithms.” IEEE Transactions on Image Processing, vol. 2, no. 2, April 1993.
[20] Susanta Mukhopadhyay and Bhabatosh Chanda,”Multiscale Morphological of Gray-Scale Images,” IEEE Transactions on Image Processing, vol. 12, no. 5, May 2003.
[21] Rabi Zaibi, ”Small moving object detection in video sequences,” in Proceedings of International Conference on Acoustics, Speech, and Signal Processing, 2000.
[22] Shao-Yi Chien, Shyh-Yih Ma and Liang-Gee Chen,”Efficient Moving Object Segmentation Algorithm Using Background Registration Technique,” IEEE Transactions on Circuit and Systems for Video Technology, vol. 12, no. 7, July 2002.
[23] Tsung-Han Tsai and Chung-Yuan Lin,” Hierarchical Decision based on Higher Order Statistical on Foreground Detection in Video Sequence,” in Proceedings of Midwest Symposium Circuit and System, 2003.
指導教授 蔡宗漢(Tsung-Han Tsai) 審核日期 2004-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明