博碩士論文 91521030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.94.21.209
姓名 林志豪(Zhi-Hou Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 含費米積分之高效率載子解析模型及其在元件模擬上的應用
(An Efficient Analytical Model for Carrier Calculation Including Fermi-Dirac Integration and Its Application to Device Simulation)
相關論文
★ 表面電漿共振效應於光奈米元件之數值研究★ 金氧半電容元件的暫態模擬之數值量測
★ 雙載子電晶體在一維和二維空間上模擬的比較★ 改善後的階層化不完全LU法及其在二維半導體元件模擬上的應用
★ 一維雙載子接面電晶體數值模擬之驗證及其在元件與電路混階模擬之應用★ 階層化不完全LU法及其在準靜態金氧半場效電晶體電容模擬上的應用
★ 探討分離式簡化電路模型在半導體元件模擬上的效益★ 撞擊游離的等效電路模型與其在半導體元件模擬上之應用
★ 二維半導體元件模擬的電流和電場分析★ 三維半導體元件模擬器之開發及SOI MOSFET特性分析
★ 元件分割法及其在二維互補式金氧半導體元件之模擬★ 含改良型L-ILU解法器及PDM電路表述之二維及三維元件數值模擬器之開發
★ 量子力學等效電路模型之建立及其對元件模擬之探討★ 適用於二維及三維半導體元件模擬的可調變式元件切割法
★ 整合式的混階模擬器之開發及其在振盪電路上的應用★ 用時域模擬法探討S參數及其應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要為開發一套有效率的載子濃度計算之解析解模型,此解析解模型是以費米積分為基礎,並將其延伸到三段及五段式解析模型載子濃度計算方法。使用此模型將不再需要任何的數值積分方法,並且此解析解模型比傳統的費米數值積分方法還要快三十九倍。為了印證所開發之載子濃度計算方法的正確性,我們也使用Medici操作手冊提供的載子濃度計算模型來印證並且與其他的解析模型比較之。而我們也將此模型加以改良使得我們的金氧半導體之源極、汲極與基板能摻雜到更高等級的濃度。並且,我們也利用我們已開發的模型來探討在金氧半導體電容與金氧半導體元件的半導體電荷及其在放大器元件上的應用。
摘要(英) In this thesis, we develop an efficient analytical model for carrier calculation. This model is based on the Fermi-Dirac integral, and extends it from the Three-Region to Five-Region analytical model of carrier calculation. No numerical integral is needed in the new model. And the running time of Fermi-Dirac numerical integral is thirty-nine times slower than our analytical models. For verifying the correctness of the analytical model of carrier calculation, we use a carrier calculation model including the Fermi-Dirac carrier statistics in Medici and an analytical model of Shur. Moreover, we apply our model to the MOSFET that allows high doping in the source, drain and substrate regions. Furthermore, we use the developed model to discuss the semiconductor charge of MOS-C and the amplifier application of MOSFET.
關鍵字(中) ★ 費米積分
★ 三段式解析模型
★ 五段式解析模型
關鍵字(英) ★ Fermi-Dirac integral
★ Five-Region Analytical Model (FRAM)
★ Three-Region Analytical Model
論文目次 1. Introduction………………………………………………………1
2. Carrier Calculation Method………………………………………3
2.1 Boltzmann and Fermi-Dirac Carrier Statistics………………………………3
2.2 The Relation of ni-Ei Model and Nc-Nv Model in Boltzmann Approximation.7
2.3 The Development of Five-Region Analytical Model (FRAM) …………8
3. Implementation of FRAM………………………………………14
3.1 Results and Verification of FRAM………………………………………14
3.2 The Comparison of FRAM and Other Models………………………19
3.3 Modeling the Boundary Condition of Device Simulation………………22
4. Applications of FRAM in Device Simulation……………………25
4.1 Semiconductor Charge and Surface Potential of 2-D MOS-C Simulation….25
4.2 The 2-D MOSFET Simulation……………………………………………34
4.2.1 I-V Characteristic of 2-D MOSFET……………………………………34
4.2.2 Small-Signal Analysis of NMOS Amplifier……………………………38
5. Conclusion…………………………………………………………………46
參考文獻 [1] MEDICI User’s Manual,2001.4.0 ed., Avant! Fremount, CA, 2001.
[2] DESSIS User’s Manual,7.0.6 ed., ISE Integrated System Engineering AG, Zurich, Switzerland, 2001.
[3] ATLAS User’s Manual,5.0.5.R ed., SILVACO Int., Santa Clara, CA, 2000.
[4] J. H. Smith, K. M. Steer, T. F. Miller and S. J. Fonash, “Numerical Modeling of Two-Dimensional Device Structures Using Brandt’s Multilevel Acceleration Scheme: Application to Poisson’s Equation,” IEEE Trans. CAD., vol. 10, pp. 822-824, June, 1991.
[5] U. V. Bhapkar and R. J. Mattauch, “Numerical Simulation of the Current-Voltage Characteristics of Heteroepitaxial Schottky-Barrier Diode,” IEEE Trans. Electron Devices, vol. 40, pp. 1038-1046, June, 1989.
[6] A. J. Garcia-Loureirot, T. F. Penat, J. M. Lopez-Gonzalezt and L. P. Vinast, “Modeling and Simulation of AlxGa1-xAs/GaAs HBTs using the Finite Element Method,” IEEE Trans., vol. 36, pp. 218-223, Oct. 2000.
[7] D. A. Neamen, Semiconductor Physics and Devices, 2nd Ed., p.89, McGraw-Hill,
1997.
[8] Y. T. Tsai, K. D. Hong and Y. L. Yuan, “An Efficient Analytical Model for Calculating Trapped Charge in Amorphous Silicon,” IEEE Trans. CAD of Integrated Circuits and Systems, vol. 13, no. 6, June, 1994.
[9] Z. H. Lin, S. J. Li, and Y. T. Tsai, “An Efficient Analytical Model for Carrier Calculation Including Fermi-Dirac Integration and its applications to device simulation,” in EDMS 2003, p.787-790.
[10] MEDICI User’s Manual,1994.2.0 ed., vol. 1, p.27-28, Avant! Fremount, CA, 1994.
[11] M. SHUR, Physics and Semiconductor Devices, Prentice-Hall International Editions, p.638, 1990.
[12] H. C. Casey, Device For Integrated Circuit, Appendix C.2, John Wiley & Sons Inc., 1999.
指導教授 蔡曜聰(Yao-Tsung Tsai) 審核日期 2004-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明