博碩士論文 91521031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.145.131.238
姓名 邱俊智(Chun-Chih Chiu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 非晶質吸光區與累增區分離之類超晶格累崩光二極體
(Amorphous Separated Absorption and Multiplication Superlattice-like Avalanche Photodiodes(Amorphous SAM-SAPD’s))
相關論文
★ 金屬-半導體-金屬光偵測器的特性★ 非晶質氮化矽氫基薄膜發光二極體與有機發光二極體的光電特性
★ 具非晶質n-i-p-n層之氧化多孔矽發光二極體的光電特性★ 低漏電流與高崩潰電壓大面積矽偵測器製程之研究
★ 具自行對準凹陷電極1x4矽質金屬-半導體-金屬光偵測器陣列的特性★ 非晶矽射極異質雙載子電晶體與有機發光二極體的特性
★ 吸光區累崩區分離的累崩光二極體★ 蕭特基源/汲極接觸的反堆疊型非晶質矽化鍺薄膜電晶體
★ 矽晶圓上具有隔離氧化層非晶質薄膜發光二極體之光電特性★ 具非晶異質接面及溝渠式電極之矽質金屬-半導體-金屬光偵測器的暗電流特性
★ 非晶矽/晶質矽異質接面矽基金屬-半導體-金屬光檢測器與具非晶質無機電子/電洞注入層高分子發光二極體之研究★ 具非晶質矽合金類量子井極薄障層之高靈敏度平面矽基金屬–半導體–金屬光檢測器
★ 具蕭特基源/汲極的上閘極型非晶矽鍺與 多晶矽薄膜電晶體★ 大面積矽偵測器的製程改良與元件設計
★ 具組成梯度能隙非晶質矽合金電子注入層與電洞緩衝層的高分子發光二極體★ 具非晶質矽合金調變週期類超晶格薄膜複層之低暗電流高熱穩定度平面矽基金屬–半導體–金屬光檢測器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘 要
本論文的研究主題是探討及比較在非晶質類超晶格(superlattice-like)結構的累增區中,分別加入p-n (a-SiC)、p-i-n (a-SiC)或p-i(a-SiC)-i-n(a-Si)非晶質複層的各種非晶質吸光區累增區分離的類超晶格累崩光二極體(非晶質SAM-SAPD)的主要光電特性,例如:光/暗電流曲線,光增益,發射雜訊,及過剩雜訊因子等等。這些元件都有相當高的光增益,但其中以加入p-i(a-SiC)-i-n(a-Si)非晶質複層的元件具有最高的光增益與最低的過剩雜訊。這些實驗結果顯示提高累增區中的電場及利用適當的能隙帶不連續性可使元件具有較佳的光電特性。
摘要(英) Abstract
In this study, several kinds of amorphous separated absorption and multiplication superlattice-like avalanche photodiode (amorphous SAM-SAPD), each with additional p-n (a-SiC), p-i-n (a-SiC), or p-i(a-SiC)-i-n(a-Si) amorphous silicon-alloy layers in substage of superlattice (SL) for multiplication, had been designed and fabricated successfully. Also their characteristics such as dark and photo I/V curves, optical gains, relative spectral responses, shot noises and excess noise factors had been systematically measured, calculated, and compared. All of these devices had rather high optical gain, and the device with the additional p-i(a-SiC)-i-n(a-Si) amorphous layers in substage of SL(named Device C) had the highest optical gain and the lowest excess noise. These results indicated that using high electric-field and proper band-edge discontinuity in the multiplication region of a SAM-SAPD could improve the device optical gain and excess noise simultaneously.
關鍵字(中) ★ 光偵測器
★ 超晶格
★ 雪崩
★ 累增
★ 累崩
★ 非晶質
★ 光二極體
關鍵字(英) ★ amorphous
★ avalanche
★ SAM-APD
★ photodoide
★ multiplication
論文目次 Contents
Abstract …………………………………………………………………I
Table Captions …………………………………………………………IV
Figure Captions …………………………………………………………V
Chapter 1 Introduction………………………………………………1
Chapter 2 Brief Theory of Amorphous Separated Absorption
and Multiplication Superlattice-like Avalanche Photodiode
(SAM-SAPD) …………………………………………………………………4
2.1 Current transport …………………………………………………4
2.2 Optical gain ………………………………………………………11
2.3 Quantum efficiency………………………………………………12
2.4 Impact ionization coefficients ………………………………12
2.5 Shot noise and Excess noise factor …………………………14
Chapter 3 Design, Fabrication, and Measurement of
Amorphous (SAM-SAPD's) ………………………………………………19
3.1 Design Considerations ……………………………………………19
3.1.1 High gain…………………………………………………………19
3.1.2 Low excess noise …………………………………………………19
3.1.3 High absorption coefficient …………………………………21
3.2 Fabrication Processes ……………………………………………21
3.2.1 Comparison of several proposed SAM-SAPD
structures ……………………………………………………………21
3.2.2 Fabrication Processes ………………………………………22
3.3 Measurement Techniques ………………………………………34
3.3.1 Optical band-gap ……………………………………………34
3.3.2 Spectral response……………………………………………34
3.3.3 Shot noise and Excess noise factor………………………38
Chapter 4 Experimental Results and Discussion ……………41
4.1 Spectral response ……………………………………………41
4.2 Dark/photo I/V curves and optical gain ……………………44
4.2.1 Comparison of Devices A, B, and C ………………………44
4.2.2 Comparison of Device C, D, 2C(SL*2), and
3C(SL*3) ………………………………………………………………52
4.3 Shot noise & excess noise factor …………………………57
Chapter 5 Conclusion ……………………………………………66
References ……………………………………………………………67
參考文獻 References
[1] Pallab Bhattacharya " Semiconductor Optoelectronic Devices (second edition)," pp. 373-374, 1997.
[2] R. J. McIntyre," Multiplication noise in uniform avalanche diodes," IEEE Trans. Electron Devices, vol. ED-13, pp. 164-168, 1966.
[3] G. E. Bulman, V. M. Robbins, K. F. Brennan, K. Hess, and G. E. Stillman, "Experimental determination of impact ionization coefficients in (100) GaAs," IEEE Electron Device Lett., vol. EDL-4, pp. 181-185, 1983.
[4] K. Brennan, "Theory of electron and hole impact ionization in quantum well and staircase superlattice avalanche photodiode structures," IEEE Trans. Electron Devices, vol. ED-32, pp. 2197-2205, 1985.
[5] H. Blauvelt, S. Margalit, and A. Yariv, "Single-carrier-type dominated impact ionisation in multilayer structures," Electron. Lett., vol. 18, pp. 375-376, 1982.
[6] K. Brennan, "Theory of the GaInAs/A1InAs-doped quantum well APD: A new low-noise solid-state photodetector for lightwave communication systems, " IEEE Trans. Electron Devices, vol. ED-33, 1653-1695, 1986.
[7] K. Brennan, "Theory of the doped quantum well superlattice APD: A new solid state photomultiplier," IEEE J. Quantum Electron., vol. QE-22, pp. 1999-2016, 1986.
[8] K. Brennan, "The pn junction quantum well APD: A new solid state Photodetector for lightwave communications systems and on-chip detector applications," IEEE Trans. Electron Devices, vol. ED-34, pp. 782-792, 1987.
[9] K. Brennan, "The p-n heterojunction quantum well APD: A new high-gain low-noise high-speed photodetector suitable for lightwave communications and digital applications," IEEE Trans. Electron Devices, vol. ED-34, pp. 793-803, 1987.
[10] K. Brennan, "Optimization and modeling of avalanche photodiode structures: Application to a new class of superlattice photodetectors, the p-i-n, p-n homojunction, and p-n heterojunction APD's," IEEE Trans. Electron Devices, vol. ED-34, pp. 1658--1669, 1987.
[11] F. Capasso, "Physics of avalanche photodiodes," in Semiconductors and Semimetals, R. K. Willardson and A. C. Beer, Eds. Lightwave Communications Technology, W. T. Tsang, Ed. New York:Academic, 1985, vol. 22, part D, pp. 1-172.
[12] F. Osaka, T. Mikawa and O. Wada, “ Electron and hole impact ionization rates in InP/Ga0.47In0.53As superlattice,” IEEE J. Quantum Electron., vol. QE-22, pp. 1986-1991,1996.
[13] K. Brennan, K. Hess and F. Capasso, “Physics of the enhancement of impact ionization in multiquantum well structures” Appl. Phys. Lett., vol. 50, no. 26, pp. 1897-1899, 1987.
[14] W. Maes, K. De Meyer and R. Van Overstraeten, “Impact ionization in silicon: a review and update,” Solid-State Electronics, vol. 33, no. 6, pp. 705-718, 1990.
[15] K. M. Van Vliet, and L. M. Rucker, "Theory of carrier multiplication and noise in avalanche devices - Part I: One-carrier processes," IEEE Trans. Electron Devices, vol. ED-26, pp. 746-751, 1979.
[16] K. M. Van Vliet, A. Friedmann, and L. M. Rucker, "Theory of carrier multiplication and noise in avalanche devices - Part II: Two-carrier processes," IEEE Trans. Electron Devices, vol. ED-26, pp. 752-764, 1979.
[17] R. S. Fyath, J. J. O'Reilly, "Multilayer APDs producing up to two impact ionisations per carrier per stage: Optical receiver performance analysis," IEE Proc., vol. 135, Pt. J, pp. 101-105, 1988.
[18] P. A. Wolff, Physics Review, vol. 95, pp. 1415, 1945
[19] NAGIB Z. HAKIM, BAHAA E.A SALEH and MALVIN C. TEICH, follow, IEEE “Generalized excess noise factor for APD of arbitrary structure, ” IEEE Trans. Electron Devices. vol. 37, NO 3, march, 1990.
[20] F. Capasso, W. T. Tsang, and G. F. Williams, “Staircase solid state photomultipliers and avalanche photodiodes with enhanced ionization rate ratio,” IEEE Trans. Electron Devices, vol. ED-30, pp. 381-390, 1982.
[21] F. Capasso, W. T. Tsang, A. L. Hutchinson, and G. P. Williams, “Enhancement of electron impact ionization in superlattice: A new avalanche photodiode with large ionization rates ratio,” Appl. Phys. Lett., vol. 40, pp. 38-40, 1982.
[22] F. Capasso, “The channeling avalanche photodiode: A novel ultra low noise interdigitated p-n junction detector,” IEEE Trans. Electron Devices, vol. ED-29, pp. 1388-1395, 1982.
[23] G. F. William, F. Capasso, and W. T. Tsang, “The graded bandgap multiplayer avalanche photodiode: A new low noise detector,” IEEE Electron Devices Lett., vol. EDL-3, pp. 71-73, 1982.
[24] J. W. Hong, W. L. Laih, Y. W. Chen, Y. K. Fang, C. Y. Chang and J. Gong, "Optical and noise characteristics of amorphous Si/SiC superlattice reach-through avalanche photodiode," IEEE Trans. Electron Devices, vol. ED-37, no.8, pp.1804-1809, 1990.
[25] G. E. Stillman, V. M. Robbins, and N. Tabatabaie, “III-V compound semi-conductor devices: optical detectors,” IEEE trans. Electron Devices, vol. ED-31, pp. 1643-1655, 1984.
[26] R. Chin, N. Holonyak, G. E. Stillman, J.Y. Tang, and K. Hess, “Impact ionization in multilayered heterojunction structures,” Electron. Lett., vol. 16, pp. 467-469, 1980.
[27] Y. Okayasu, K. Fukui, and M. Matsumura, “Observation of valance-band discontinuity of hydrogenerated-amorphous Si/SiC heterojunction by photocurrent-voltage measurements ” Appl. Phys. Lett., vol. 50, pp. 248-249, 1987.
[28] D. Kruangam, T. Endo, M. Deguchi, W. Guang-Pu, H. Okamoto, and Y. Hamakawa "Amorphous silicon-carbide thin-film light emittingdDiode", Optoelectronics Devices and Technologies, Vol. 1, No. 1, p. 67-84, 1986.
[29] Rong-Hwei Yeh, "Green-blue porous silicon light-emitting diode", Master thesis, Institute of Electrical Engineering, National Central University, Chung-Li, Taiwan, Republic of China, 1996.
[30] Yung-Hung Wu, "Optoelectronic characteristics of a-SiC:H-based p-i-n thin-film LEDs having a thin Mo buffer layer in contact with p-a-Si:H", Master thesis, Institute of Electrical Engineering, National Central University, Chung-Li, Taiwan, Republic of China, 1996.
[31] K. Tanaka, Glow-discharge Hydrogenated Amorphous Silicon, Chap. 3, KTK Scientific Publishers, 1989.
[32] J. N. Hollenhorst, "A theory of multiplication noise," IEEE Trans. Electron Devices. vol. 37, pp. 781-788, 1990.
指導教授 洪志旺(Jyh-Wong Hong) 審核日期 2004-6-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明