博碩士論文 91521038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.233.239.102
姓名 曾勝雄(Sheng-Hsiung Tseng)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 鍺量子點金氧半光偵測器與複晶矽薄膜光電晶體之研究
(Germanium Quantum Dot Metal-Oxide-Semiconductor Photodiodes and Poly-Si Thin-Film Transistors)
相關論文
★ 高效能矽鍺互補型電晶體之研製★ 高速低功率P型矽鍺金氧半電晶體之研究
★ 應變型矽鍺通道金氧半電晶體之研製★ 金屬矽化物薄膜與矽/矽鍺界面反應 之研究
★ 矽鍺異質源/汲極結構與pn二極體之研製★ 矽鍺/矽異質接面動態啓始電壓金氧半電晶體之研製
★ 應用於單電子電晶體之矽/鍺量子點研製★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製
★ 選擇性氧化複晶矽鍺形成鍺量子點的光特性與光二極體研製★ 選擇性氧化複晶矽鍺形成鍺量子點及其在金氧半浮點電容之應用
★ 鍺量子點共振穿隧二極體與電晶體之關鍵製程模組開發與元件特性★ 自對準矽奈米線金氧半場效電晶體之研製
★ 鍺浮點記憶體之研製★ 利用選擇性氧化單晶矽鍺形成鍺量子點之物性及電性分析
★ 具有自我對準電極鍺量子點單電洞電晶體之製作與物理特性研究★ 具有自我對準下閘電極鍺量子點單電洞電晶體之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文探討以傳統互補式金氧半電晶體( complementary metal-oxidesemiconductor, CMOS)製程所製作之鍺量子點光二極體(photodiodes)、光電晶體(phototransistors)及其元件物理/電氣特性。主要具體的成果有三:第一、成功開發出以熱氧化介電層上的複晶矽鍺(poly-Si0.87Ge0.13)方法來形成鍺量子點;且其對於可見光至紫外光有高吸收效率。第二、實作出閘介電層含量子點的MOS光二極體,並分析不同量子點層數(零、一及三層)對於電流-電壓(current-voltage,I-V)特性的影響及電子/電洞在其內的傳輸機制。利用變溫I-V 分析來探討暗電流機制,並論證percolation hopping 理論為主要傳輸機制。在照光下,鍺量子點光二極體的電流大幅增加且展現具放大效應的光響應(amplified responsivity);
亦即鍺量子點層從零、一增至三層時,光響應(及對應的量子效率)分別從4.64(1.42%)、482(148%)增至812 mA/W(245%)。此外,波長-光響應圖也顯示當量子點縮小(9 nm → 5 nm)後光譜峰值有明顯的藍移現象,意謂著吸收光的機制可能源自於鍺量子點的量子侷限效應。第三,實作並論證雙閘式薄膜電晶體(thin-film transistors)結構的鍺量子點光電晶體。相較於不照光而言,此鍺量子點光電晶體在光波長405-450 nm 照射下,有顯著的電流增加且次臨限特性得以明顯改善。這意謂著只有光激發的電洞透過垂直電場注入通道並貢獻於光電流,而無光激發電子所引發的接面位障下降的副作用。鍺量子點光電晶體的波長-光響應圖與光二極體之結果相吻合,表示光電晶體的光吸收亦源自量子點的量子侷限效應。變溫及光暫態量測顯示此光電晶體有良好熱穩定性及光吸收效率。未來此等鍺量子點光偵測元件預期將可與矽電子元件整合至矽基板以作為光電積體電路。
摘要(英) This thesis investigates the device physics and electrical characteristics of Ge-QD photodiodes (PDs) and hototransistors (PTs) fabricated in a complementary metal-oxide-semiconductor (CMOS) process. The main features encompass as follows. First, thermally oxidizing poly-Si0.87Ge0.13 onto a dielectric layer produces Ge
QDs embedded in an SiO2 matrix to serve as an efficient absorption layer for visible to ultraviolet light. Secondly, we have successfully demonstrated the feasibility of MOS PDs including multi-layer Ge QDs in the gate oxide and elucidated the current–voltage characteristics in terms of zero, one and three Ge-QD layers. Ge-QD PDs exhibit dramatically enhanced current under light illumination in the inversion mode and amplified responsivity (quantum efficiency) from 4.64 (1.42%), through
482 (148%) to 812 (245%) mA/W, respectively, as the Ge-QD layer number increases from zero, through one to three. Shrinking Ge QD size from 9.1 nm to 5.1 nm reveals considerable blueshift in spectral peak energies, originating from the quantum confinement effect (QCE). The temperature and bias dependences on the dark current
ascribe the charge transport mechanism to be percolation hopping. Thirdly, Ge-QD PTs are realized by double-gated thin-film transistors with Ge QDs in the top-gate
dielectrics. Compared with the current in darkness, 405-450 nm light illumination strongly enhances drain current and improves the PTs’subthreshold characteristics, following from that only photo-excited holes within Ge QDs inject into the active channel via vertical electric field and contribute to photocurrent without the counterpart photo-generated electron-induced junction barrier lowering. Spectral responses of Ge-QD PTs are consistent with that of Ge-QD PDs, attributing the PTs’photo-absorption to QCE. Temperature-dependent and light pulse characterizations demonstrate Ge-QD PTs have great thermal stability and photo-absorption efficiency. These Ge-QD PDs and PTs offer a deterministic approach to integrate with Si-based electronics monolithically.
關鍵字(中) ★ 鍺
★ 量子點
★ 光偵測器
★ 光電晶體
關鍵字(英) ★ Germanium
★ Quantum Dot
★ Photodiodes
★ Phototransistors
論文目次 摘要 i
Abstract iii
誌謝 v
Table of Contents vi
Figure Captions viii
Table Captions xii
Chapter 1 Introduction 1
1-1 Introduction 1
1-2 Dissertation organization 5
Chapter 2 Review of forming Ge QDs by thermally oxidizing single crystalline Si1-xGex-on-insulator 8
2-1 Introduction 8
2-2 Thermal oxidation of Si1-xGex 10
2-2-1 Thermally oxidizing Si1-xGex with x < 0.5 11
2-2-2 Thermally oxidizing Si1-xGex with x ≥ 0.5 15
2-2-3 Transition temperature 15
2-3 Forming Ge QDs by oxidizing Si1-xGex-on-insulatator 16
2-4 Cathodoluminescence characterization of Ge QDs 22
2-5 Summary 26
Chapter 3 Forming Ge QDs by thermally oxidizing poly-Si1-xGex-on-insulator 32
3-1 Introduction 32
3-2 Developing poly-Si1-xGex deposition recipes 33
3-2-1 Incubation time effect 33
3-2-2 Relationships among poly-Si1-xGex deposition parameters 34
3-2-3 Development of poly-Si1-xGex deposition recipes 36
3-2-4 Poly-Si1-xGex deposition model 39
3-3 Forming Ge QDs by thermally oxidizing poly-Si1-xGex/TEOS oxide onto dry oxide 41
3-3-1 Depositing multi-stack a-Si/poly-Si0.87Ge0.13/a-S/TEOS oxide onto a dry oxide on top of a Si substrate 42
3-3-2 Effects of poly-SiGe morphology on Ge QD’s distribution 43
3-3-3 Effects of inter-dielectric layer thickness on Ge QD’s size and shape 44
3-4 Forming Ge QDs by thermally oxidizing poly-Si1-xGex/TEOS oxide onto Si3N4 49
3-5 Summary 51
Chapter 4 MOS photodetectors incorporating multi-layer Ge QDs into gate oxide 58
4-1 Introduction 58
4-2 Fabricating MOS PDs with multi-layer Ge QDs 59
4-3 Current-electric field characteristics 60
4-4 Dark current mechanism 62
4-5 Photo-absorption of Ge-QD MOS PDs 69
4-6 Photo-excited carrier transportation in Ge QDs embedded in the gate oxide of MOS PDs 74
4-7 Amplified photoresponsivity 77
4-8 Summary 80
Chapter 5 Poly-Si phototransistors incorporating Ge QDs into the gate stack 87
5-1 Introduction 87
5-2 Fabricating and characterizing poly-Si PTs with Ge QDs 89
5-3 Photocurrent origin of Ge-QD PTs 92
5-4 Photo-absorption mechanism of Ge-QD PTs 97
5-5 Temperature-dependent characterizations 97
5-6 Light pulse characterizations 106
5-7 Summary 111
Chapter 6 Conclusion and future work 121
6-1 Conclusion 121
6-2 Future work 124
Reference 128
Biogaphy 140
Publication list 141
Appendix: Introduction of multi-exciton generation (MEG) 144
A-1 Current status of MEG development in QDs 144
A-1-1 Material characterizations in compound QDs 144
A-1-2 Device features in compound QDs 145
A-1-3 Material characterizations in Si QDs 146
A-2 Future directions of studying MEG in our Ge QDs 147
A-2-1 Material aspects 147
A-2-2 Device aspects 148
參考文獻 [1] D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum dot heterostructures: Wiley, 1999.
[2] Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, and Y. Masumoto, "Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices," Applied Physics Letters, vol. 59, pp. 3168-3170, 1991.
[3] D. J. Eaglesham and M. Cerullo, "Dislocation-free Stranski-Krastanow growth of Ge on Si(100)," Physical Review Letters, vol. 64, p. 1943, 1990.
[4] Y. Maeda, "Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: Evidence in support of the quantum-confinement mechanism," Physical Review B, vol. 51, p. 1658, 1995.
[5] L. Brus, "Zero-dimensional "excitons" in semiconductor clusters," Quantum Electronics, IEEE Journal of, vol. 22, pp. 1909-1914, 1986.
[6] T. Takagahara and K. Takeda, "Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials," Physical Review B, vol. 46, p. 15578, 1992.
[7] E. Palange, G. Capellini, L. Di Gaspare, and F. Evangelisti, "Atomic force microscopy and photoluminescence study of Ge layers and self-organized Ge quantum dots on Si(100)," Applied Physics Letters, vol. 68, pp. 2982-2984, 1996.
[8] L. Rebohle, J. von Borany, R. A. Yankov, W. Skorupa, I. E. Tyschenko, H. Frob, and K. Leo, "Strong blue and violet photoluminescence and electroluminescence from germanium-implanted and silicon-implanted silicon-dioxide layers," Applied Physics Letters, vol. 71, pp. 2809-2811, 1997.
[9] M. Zacharias and P. M. Fauchet, "Blue luminescence in films containing Ge and GeO2 nanocrystals: The role of defects," Applied Physics Letters, vol. 71, pp. 380-382, 1997.
[10] J.-Y. Zhang, Y.-H. Ye, and X.-L. Tan, "Electroluminescence and carrier transport of SiO2 film containing different density of Ge nanocrystals," Applied Physics Letters, vol. 74, pp. 2459-2461, 1999.
[11] H. Yang, X. Wang, H. Shi, S. Xie, F. Wang, X. Gu, and X. Yao, "Photoluminescence of Ge nanoparticles embedded in SiO2 glasses fabricated by a sol-gel method," Applied Physics Letters, vol. 81, pp. 5144-5146, 2002.
[12] K. V. Shcheglov, C. M. Yang, K. J. Vahala, and H. A. Atwater, "Electroluminescence and photoluminescence of Ge-implanted Si/SiO2/Si structures," Applied Physics Letters, vol. 66, pp. 745-747, 1995.
[13] K. Brunner, "Si/Ge nanostructures," Reports on Progress in Physics, vol. 65, pp. 27-72, 2002.
[14] S. Takeoka, M. Fujii, S. Hayashi, and K. Yamamoto, "Size-dependent near-infrared photoluminescence from Ge nanocrystals embedded in SiO2 matrices," Physical Review B, vol. 58, p. 7921, 1998.
[15] W. T. Lai and P. W. Li, "Growth kinetics and related physical/electrical properties of Ge quantum dots formed by thermal oxidation of Si1-xGex-on-insulator," Nanotechnology, vol. 18, p. 145402, 2007.
[16] T. Oku, T. Nakayama, M. Kuno, Y. Nozue, L. R. Wallenberg, K. Niihara, and K. Suganuma, "Formation and photoluminescence of Ge and Si nanoparticles encapsulated in oxide layers," Materials Science and Engineering B, vol. 74, pp. 242-247, 2000.
[17] A. Rodríguez, M. I. Ortiz, J. Sangrador, T. Rodríguez, M. Avella, A. C. Prieto, Á. Torres, J. Jiménez, A. Kling, and C. Ballesteros, "Comparative study of the luminescence of structures with Ge nanocrystals formed by dry and wet oxidation of SiGe films," Nanotechnology, vol. 18, p. 065702, 2007.
[18] P. W. Li, W. M. Liao, S. W. Lin, P. S. Chen, S. C. Lu, and M. J. Tsai, "Formation of atomic-scale germanium quantum dots by selective oxidation of SiGe/Si-on-insulator," Applied Phsics Letters, vol. 83, pp. 4628-4630, 2003.
[19] P. W. Li, D. M. T. Kuo, W. M. Lio, and M. J. Tsai, "Optical and Electronic Characteristics of Germanium Quantum Dots Formed by Selective Oxidation of SiGe/Si-on-Insulator," Japan Journal of Applied Physics, vol. 43, pp. 7788-7792, 2004.
[20] M. Ichikawa, "Growth of Si and Ge nanostructures on Si substrates using ultrathin SiO2 technology," Quantum Electronics, IEEE Journal of, vol. 38, pp. 988-994, 2002.
[21] A. K. Dutta, "Visible photoluminescence from Ge nanocrystal embedded into a SiO2 matrix fabricated by atmospheric pressure chemical vapor deposition," Applied Physics Letters, vol. 68, pp. 1189-1191, 1996.
[22] T. Baron, B. Pelissier, L. Perniola, F. Mazen, J. M. Hartmann, and G. Rolland, "Chemical vapor deposition of Ge nanocrystals on SiO2," Applied Physics Letters, vol. 83, pp. 1444-1446, 2003.
[23] W. S. Liu, J. S. Chen, M. A. Nicolet, V. Arbet-Engels, and K. L. Wang, "Nanocrystalline Ge in SiO2 by annealing of GexSi1-xO2 in hydrogen," Applied Physics Letters, vol. 62, pp. 3321-3323, 1993.
[24] D. C. Paine, C. Caragianis, T. Y. Kim, Y. Shigesato, and T. Ishahara, "Visible photoluminescence from nanocrystalline Ge formed by H2 reduction of Si0.6Ge0.4O2," Applied Physics Letters, vol. 62, pp. 2842-2844, 1993.
[25] C. Caragianis-Broadbridge, J. M. Blaser, and D. C. Paine, "A cross-sectional atomic force microscopy study of nanocrystalline Ge precipitates in SiO2 formed from metastable Si1-xGexO2," Journal of Applied Physics, vol. 82, pp. 1626-1631, 1997.
[26] G. Taraschi, S. Saini, W. W. Fan, L. C. Kimerling, and E. A. Fitzgerald, "Nanostructure and infrared photoluminescence of nanocrystalline Ge formed by reduction of Si0.75Ge0.25O2/Si0.75Ge0.25 using various H2 pressures," Journal of Applied Physics, vol. 93, pp. 9988-9996, 2003.
[27] S. Ağan, A. Çelik-Aktaş, J. M. Zuo, A. Dana, and A. Aydinli, "Synthesis and size differentiation of Ge nanocrystals in amorphous SiO2," Applied Physics A: Materials Science & Processing, vol. 83, pp. 107-110, 2006.
[28] V. Craciun, I. W. Boyd, A. H. Reader, and D. E. W. Vandenhoudt, "Low temperature synthesis of Ge nanocrystals in SiO2," Applied Physics Letters, vol. 65, pp. 3233-3235, 1994.
[29] T.-S. Yoon and K.-B. Kim, "Ge-rich Si1-xGex nanocrystal formation by the oxidation of an as-deposited thin amorphous Si0.7Ge0.3 layer," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 20, pp. 631-634, 2002.
[30] T. Stoica and E. Sutter, "Ge dots embedded in SiO2 obtained by oxidation of Si/Ge/Si nanostructures," Nanotechnology, vol. 17, p. 4912, 2006.
[31] A. Rodríguez, M. I. Ortiz, J. Sangrador, T. Rodríguez, M. Avella, A. C. Prieto, Á. Torres, J. Jiménez, A. Kling, and C. Ballesteros, "Comparative study of the luminescence of structures with Ge nanocrystals formed by dry and wet oxidation of Si1-xGex films," Nanotechnology, vol. 18, p. 065702, 2007.
[32] F. K. LeGoues, R. Rosenberg, T. Nguyen, F. Himpsel, and B. S. Meyerson, "Oxidation studies of SiGe," Journal of Applied Physics, vol. 65, pp. 1724-1728, 1989.
[33] F. K. LeGoues, R. Rosenberg, and B. S. Meyerson, "Kinetics and mechanism of oxidation of SiGe: dry versus wet oxidation," Applied Physics Letters, vol. 54, pp. 644-646, 1989.
[34] F. K. LeGoues, R. Rosenberg, and B. S. Meyerson, "Dopant redistribution during oxidation of SiGe," Applied Physics Letters, vol. 54, pp. 751-753, 1989.
[35] J. Eugène, F. K. LeGoues, V. P. Kesan, S. S. Iyer, and F. M. d'Heurle, "Diffusion versus oxidation rates in silicon-germanium alloys," Applied Physics Letters, vol. 59, pp. 78-80, 1991.
[36] H. K. Liou, P. Mei, U. Gennser, and E. S. Yang, "Effects of Ge concentration on SiGe oxidation behavior," Applied Physics Letters, vol. 59, pp. 1200-1202, 1991.
[37] W. S. Liu, J. S. Chen, M. A. Nicolet, V. Arbet-Engels, and K. L. Wang, "Instability of a GexSi1-xO2 film on a GexSi1-x layer," Journal of Applied Physics, vol. 72, pp. 4444-4446, 1992.
[38] W. S. Liu, E. W. Lee, M. A. Nicolet, V. Arbet-Engels, K. L. Wang, N. M. Abuhadba, and C. R. Aita, "Wet oxidation of GeSi at 700 oC," Journal of Applied Physics, vol. 71, pp. 4015-4018, 1992.
[39] S. G. Park, W. S. Liu, and M. A. Nicolet, "Kinetics and mechanism of wet oxidation of GexSi1-x alloys," Journal of Applied Physics, vol. 75, pp. 1764-1770, 1994.
[40] H. Tsutsu, W. J. Edwards, D. G. Ast, and T. I. Kamins, "Oxidation of polycrystalline-SiGe alloys," Applied Physics Letters, vol. 64, pp. 297-299, 1994.
[41] P. E. Hellberg, S. L. Zhang, F. M. d'Heurle, and C. S. Petersson, "Oxidation of silicon--germanium alloys. I. An experimental study," Journal of Applied Physics, vol. 82, pp. 5773-5778, 1997.
[42] S. K. Kang, D. H. Ko, K. C. Lee, T. W. Lee, Y. H. Lee, T. H. Ahn, I. S. Yeo, S. H. Oh, and C. G. Park, "Wet oxidation behaviors of polycrystalline Si1-xGex films," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 19, p. 1617, 2001.
[43] T.-H. Ahn, I.-S. Yeo, T.-K. Kim, M.-S. Joo, H.-S. Kim, J.-J. Kim, J.-H. Joung, and J. W. Park, "Effects of Ge Content on the Oxidation Behavior of Poly-Si1 - xGex Layers for Gate Electrode Application," Journal of The Electrochemical Society, vol. 148, pp. G50-G54, 2001.
[44] A. K. Rai and S. M. Prokes, "Wet oxidation of amorphous SiGe layer deposited on Si(001) at 800 and 900 oC," Journal of Applied Physics, vol. 72, pp. 4020-4025, 1992.
[45] P. E. Hellberg, S. L. Zhang, F. M. d'Heurle, and C. S. Petersson, "Oxidation of silicon--germanium alloys. II. A mathematical model," Journal of Applied Physics, vol. 82, pp. 5779-5787, 1997.
[46] O. W. Holland, C. W. White, and D. Fathy, "Novel oxidation process in Ge+-implanted Si and its effect on oxidation kinetics," Applied Physics Letters, vol. 51, pp. 520-522, 1987.
[47] J. D. Plummer, M. Deal, and P. B. Griffin, Silicon VLSI Technology: Fundamentals, Practice, and Modeling: Prentice Hall, 2000.
[48] Z. Di, P. K. Chu, M. Zhang, W. Liu, Z. Song, and C. Lin, "Germanium movement mechanism in SiGe-on-insulator fabricated by modified Ge condensation," Journal of Applied Physics, vol. 97, pp. 064504-5, 2005.
[49] N. Sugiyama, T. Tezuka, T. Mizuno, M. Suzuki, Y. Ishikawa, N. Shibata, and S. Takagi, "Temperature effects on Ge condensation by thermal oxidation of SiGe-on-insulator structures," Journal of Applied Physics, vol. 95, pp. 4007-4011, 2004.
[50] G.-R. Lin, C.-J. Lin, C.-K. Lin, L.-J. Chou, and Y.-L. Chueh, "Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2," Journal of Applied Physics, vol. 97, pp. 094306-8, 2005.
[51] W. K. Choi, V. Ng, Y. W. Ho, S. P. Ng, T. B. Chen, M. B. Yu, Rusli, S. F. Yoon, B. A. Cheong, and G. L. Chen, "Raman and photoluminescence characterization of Ge nanocrystals in co-sputtered Ge + SiO2 system," Materials Science and Engineering: C, vol. 16, pp. 135-138, 2001.
[52] Y. M. Niquet, G. Allan, C. Delerue, and M. Lannoo, "Quantum confinement in germanium nanocrystals," Applied Physics Letters, vol. 77, pp. 1182-1184, 2000.
[53] T. J. King, J. R. Pfiester, and K. C. Saraswat, "A variable-work-function polycrystalline-Si1-xGex gate material for submicrometer CMOS technologies," Electron Device Letters, IEEE, vol. 12, pp. 533-535, 1991.
[54] T. J. King and K. C. Saraswat, "A low-temperature (< 500 oC) silicon-germanium MOS thin-film transistor technology for large-area electronics," in Electron Devices Meeting, 1991. IEDM '91. Technical Digest., International, 1991, pp. 567-570.
[55] J. A. Tsai, A. J. Tang, T. Noguchi, and R. Reif, "Effects of Ge on Material and Electrical Properties of Polycrystalline Si1-xGex for Thin-Film Transistors," Journal of The Electrochemical Society, vol. 142, pp. 3220-3225, 1995.
[56] A. E. Franke, J. M. Heck, T. J. King, and R. T. Howe, "Polycrystalline Silicon–Germanium Films for Integrated Microsystems," Journal of Microelectromechanical Systems, vol. 12, p. 160, 2003.
[57] C. Y. Chen and J. J. Ho, "Low-temperature poly-SiGe alloy growth of high gain/speed pin infrared photosensor with gold-induced lateral crystallization (Au-ILC)," Electron Devices, IEEE Transactions on, vol. 50, pp. 1807-1812, 2003.
[58] J. H. Wu and P. W. Li, "Ge nanocrystal metal-oxide-semiconductor transistors with Ge nanocrystals formed by thermal oxidation of poly-Si0.88Ge0.12," Semiconductor Science and Technology, vol. 22, pp. S89-S92, 2007.
[59] S. S. Tseng, I. H. Chen, and P. W. Li, "Photoresponses in polycrystalline silicon phototransistors incorporating germanium quantum dots in the gate dielectrics," Applied Physics Letters, vol. 93, p. 191112, 2008.
[60] S. S. Tzeng and P. W. Li, "Enhanced 400-600 nm photoresponsivity of metal-oxide-semiconductor diodes with multi-stack germanium quantum dots," Nanotechnology, vol. 19, p. 235203, 2008.
[61] S.-M. Jang, K. Liao, and R. Reif, "Chemical Vapor Deposition of Epitaxial Silicon-Germanium from Silane and Germane (I) Kinetics," Journal of The Electrochemical Society, vol. 142, pp. 3513-3520, 1995.
[62] H. C. Lin, C. Y. Chang, W. H. Chen, W. C. Tsai, T. C. Chang, T. G. Jung, and H. Y. Lin, "Effects of SiH4, GeH4, and B2H6 on the Nucleation and Deposition of Polycrystalline Si1-xGex Films," Journal of The Electrochemical Society, vol. 141, pp. 2559-2563, 1994.
[63] M. Racanelli and D. W. Greve, "Temperature dependence of growth of Si1-xGex by ultrahigh vacuum chemical vapor deposition," Applied Physics Letters, vol. 56, pp. 2524-2526, 1990.
[64] S. Sedky, P. Fiorini, M. Caymax, S. Loreti, K. Baert, L. Hermans, R. Mertens, and L. Imec, "Structural and mechanical properties of polycrystalline silicongermanium for micromachining applications," Microelectromechanical Systems, Journal of, vol. 7, pp. 365-372, 1998.
[65] C. Rusu, S. Sedky, B. Parmentier, A. Verbist, O. Richard, B. Brijs, L. Geenen, A. Witvrouw, F. Larmer, and F. Fischer, "New low-stress PECVD poly-SiGe Layers for MEMS," Microelectromechanical Systems, Journal of, vol. 12, pp. 816-825, 2003.
[66] M. Cao, A. Wang, and K. C. Saraswat, "Low Pressure Chemical Vapor Deposition of Si1-xGex Films on SiO2," Journal of The Electrochemical Society, vol. 142, pp. 1566-1572, 1995.
[67] T.-J. King and K. C. Saraswat, "Deposition and Properties of Low-Pressure Chemical-Vapor Deposited Polycrystalline Silicon-Germanium Films," Journal of The Electrochemical Society, vol. 141, pp. 2235-2241, 1994.
[68] J. Olivares, J. Sangrador, A. Rodríguez, and T. Rodríguez, "Effect of Deposition Parameters on the Characteristics of Low-Pressure Chemical Vapor Deposited Si1-xGex Films Grown from Si2H6 and GeH4," Journal of The Electrochemical Society, vol. 148, pp. C685-C689, 2001.
[69] H.-C. Lin, H.-Y. Lin, C.-Y. Chang, T.-F. Lei, P. J. Wang, and C.-Y. Chao, "Growth of undoped polycrystalline Si by an ultrahigh vacuum chemical vapor deposition system," Applied Physics Letters, vol. 63, pp. 1351-1353, 1993.
[70] K. M. Chen, H. J. Huang, C. Y. Chang, L. P. Chen, and G. W. Huang, "Deposition of polycrystalline Si and SiGe by ultra-high vacuum chemical molecular epitaxy," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 18, p. 1196, 2000.
[71] P. M. Garone, J. C. Sturm, P. V. Schwartz, S. A. Schwarz, and B. J. Wilkens, "Silicon vapor phase epitaxial growth catalysis by the presence of germane," Applied Physics Letters, vol. 56, pp. 1275-1277, 1990.
[72] B. S. Meyerson, K. J. Uram, and F. K. LeGoues, "Cooperative growth phenomena in silicon/germanium low-temperature epitaxy," Applied Physics Letters, vol. 53, pp. 2555-2557, 1988.
[73] D. J. Robbins, J. L. Glasper, A. G. Cullis, and W. Y. Leong, "A model for heterogeneous growth of Si1-xGex films from hydrides," Journal of Applied Physics, vol. 69, pp. 3729-3732, 1991.
[74] N. M. Russell and W. G. Breiland, "A surface kinetics model for the growth of Si1-xGex films from SiH4/GeH4 mixtures," Journal of Applied Physics, vol. 73, pp. 3525-3530, 1993.
[75] J. Holleman, A. E. T. Kuiper, and J. F. Verweij, "Kinetics of the Low Pressure Chemical Vapor Deposition of Polycrystalline Germanium-Silicon Alloys from SiH4 and GeH4," Journal of The Electrochemical Society, vol. 140, pp. 1717-1722, 1993.
[76] X. Yang and M. Tao, "A Kinetic Model for Si1-xGex Growth from SiH4 and GeH4 by CVD," Journal of The Electrochemical Society, vol. 154, pp. H53-H59, 2007.
[77] M. Kanoun, C. Busseret, A. Poncet, A. Souifi, T. Baron, and E. Gautier, "Electronic properties of Ge nanocrystals for non volatile memory applications," Solid State Electronics, vol. 50, pp. 1310-1314, 2006.
[78] Shao-Hua Hsu, "Germanium quantum-dot single-hole transistors with self-aligned electrodes based on a bottom-gate technology," National Central University, Master thesis, 2007.
[79] J. T. Fitch, "Selectivity Mechanisms in Low Pressure Selective Epitaxial Silicon Growth," Journal of The Electrochemical Society, vol. 141, pp. 1046-1055, 1994.
[80] W. A. P. Claassen and J. Bloem, "The Nucleation of CVD Silicon on SiO2 and Si3N4 Substrates (I)," Journal of The Electrochemical Society, vol. 127, pp. 194-202, 1980.
[81] T. Baron, F. Martin, P. Mur, C. Wyon, and M. Dupuy, "Silicon quantum dot nucleation on Si3N4, SiO2 and SiOxNy substrates for nanoelectronic devices," Journal of Crystal Growth, vol. 209, p. 1004, 2000.
[82] K. Sinniah, M. G. Sherman, L. B. Lewis, W. H. Weinberg, J. T. Yates, and K. C. Janda, "New Mechanism for Hydrogen Desorption from Covalent Surfaces: The Monohydride Phase on Si(100)," Physical Review Letters, vol. 62, p. 567, 1989.
[83] Shu-Hao Hsu, "Fabrication and Carrier Transport Mechanism of Nonvolatile Germanium Quantum Dots Imbedded in Oxide-Nitride Composite Tunnel Dielectric MOS-Capacitors," National Central University, Master thesis, 2008.
[84] J. D. Schaub, S. J. Koester, G. Dehlinger, Q. C. Ouyang, D. Guckenberger, M. Yang, D. L. Rogers, J. Chu, and A. Grill, "High-speed lateral PIN photodiodes in silicon technologies," Proceedings of SPIE, vol. 5353, p. 1, 2004.
[85] M. Razeghi and A. Rogalski, "Semiconductor ultraviolet detectors," Journal of Applied Physics, vol. 79, pp. 7433-7473, 1996.
[86] S. K. Zhang, W. B. Wang, I. Shtau, F. Yun, L. He, H. Morkoc, X. Zhou, M. Tamargo, and R. R. Alfano, "Backilluminated GaN/AlGaN heterojunction ultraviolet photodetector with high internal gain," Applied Physics Letters, vol. 81, pp. 4862-4864, 2002.
[87] D. Caputo, G. de Cesare, A. Nascetti, and M. Tucci, "Detailed Study of Amorphous Silicon Ultraviolet Sensor With Chromium Silicide Window Layer," Electron Devices, IEEE Transactions on, vol. 55, pp. 452-456, 2008.
[88] G. de Cesare, D. Caputo, A. Nascetti, C. Guiducci, and B. Ricco, "Hydrogenated amorphous silicon ultraviolet sensor for deoxyribonucleic acid analysis," Applied Physics Letters, vol. 88, pp. 083904-3, 2006.
[89] O. M. Nayfeh, S. Rao, A. Smith, J. Therrien, and M. H. Nayfeh, "Thin film silicon nanoparticle UV photodetector," Photonics Technology Letters, IEEE, vol. 16, pp. 1927-1929, 2004.
[90] J.-M. Shieh, Y.-F. Lai, W.-X. Ni, H.-C. Kuo, C.-Y. Fang, J.-Y. Huang, and C.-L. Pan, "Enhanced photoresponse of a metal-oxide-semiconductor photodetector with silicon nanocrystals embedded in the oxide layer," Applied Physics Letters, vol. 90, p. 051105, 2007.
[91] W.-J. Chiang, C.-Y. Chen, C.-J. Lin, Y.-C. King, A.-T. Cho, C.-T. Peng, C.-W. Chao, K.-C. Lin, and F.-Y. Gan, "Silicon nanocrystal-based photosensor on low-temperature polycrystalline-silicon panels," Applied Physics Letters, vol. 91, pp. 051120-3, 2007.
[92] S. M. Hossain, A. Anopchenko, S. Prezioso, L. Ferraioli, L. Pavesi, G. Pucker, P. Bellutti, S. Binetti, and M. Acciarri, "Subband gap photoresponse of nanocrystalline silicon in a metal-oxide-semiconductor device," Journal of Applied Physics, vol. 104, pp. 074917-4, 2008.
[93] T. A. Burr, A. A. Seraphin, E. Werwa, and K. D. Kolenbrander, "Carrier transport in thin films of silicon nanoparticles," Physical Review B, vol. 56, p. 4818, 1997.
[94] M. Ben-Chorin, F. Möller, F. Koch, W. Schirmacher, and M. Eberhard, "Hopping transport on a fractal: ac conductivity of porous silicon," Physical Review B, vol. 51, p. 2199, 1995.
[95] A. Rose, "Space-Charge-Limited Currents in Solids," Physical Review, vol. 97, p. 1538, 1955.
[96] C. W. Liu, B. C. Hsu, K. F. Chen, M. H. Lee, C. R. Shie, and P.-S. Chen, "Strain-induced growth of SiO2 dots by liquid phase deposition," Applied Physics Letters, vol. 82, pp. 589-591, 2003.
[97] S. M. Sze, Physics of Semiconductor Devices, 2nd ed.: New York, Wiley-Interscience, 1981.
[98] M. Fujii, Y. Inoue, S. Hayashi, and K. Yamamoto, "Hopping conduction in SiO2 films containing C, Si, and Ge clusters," Applied Physics Letters, vol. 68, pp. 3749-3751, 1996.
[99] M. Fujii, O. Mamezaki, S. Hayashi, and K. Yamamoto, "Current transport properties of SiO2 films containing Ge nanocrystals," Journal of Applied Physics, vol. 83, pp. 1507-1512, 1998.
[100] A. L. Efros and B. I. Shklovskii, "Coulomb gap and low temperature conductivity of disordered systems," Journal of Physics C: Solid State Physics, vol. 8, pp. L49-L51, 1975.
[101] E. Šimánek, "The temperature dependence of the electrical resistivity of granular metals," Solid State Communications, vol. 40, pp. 1021-1023, 1981.
[102] J. Zhang and B. I. Shklovskii, "Density of states and conductivity of a granular metal or an array of quantum dots," Physical Review B (Condensed Matter and Materials Physics), vol. 70, pp. 115317-13, 2004.
[103] D. Yu, C. Wang, B. L. Wehrenberg, and P. Guyot-Sionnest, "Variable Range Hopping Conduction in Semiconductor Nanocrystal Solids," Physical Review Letters, vol. 92, pp. 216802-4, 2004.
[104] M. A. Rafiq, Y. Tsuchiya, H. Mizuta, S. Oda, S. Uno, Z. A. K. Durrani, and W. I. Milne, "Hopping conduction in size-controlled Si nanocrystals," Journal of Applied Physics, vol. 100, pp. 014303-4, 2006.
[105] I. Balberg, "Tunnelling and percolation in lattices and the continuum," Journal of Physics D: Applied Physics, vol. 42, p. 064003, 2009.
[106] C. W. Liu, W. T. Liu, M. H. Lee, W. S. Kuo, and B. C. Hsu, "A novel photodetector using MOS tunneling structures," Electron Device Letters, IEEE, vol. 21, pp. 307-309, 2000.
[107] M. Avella, A. C. Prieto, J. Jiménez, A. Rodríguez, J. Sangrador, and T. Rodríguez, "Violet luminescence in Ge nanocrystals/Ge oxide structures formed by dry oxidation of polycrystalline Si1-xGex," Solid State Communications, vol. 136, pp. 224-227, 2005.
[108] Kuan-Hung Chen, "Positioning and numbering Ge quantum dots for effective single-electrondevices," National Central University, Master thesis, 2008.
[109] H. L. Aharoni, D. Azulay, O. Millo, and I. Balberg, "Anomalous photovoltaic effect in nanocrystalline Si/SiO2 composites," Applied Physics Letters, vol. 92, pp. 112109-3, 2008.
[110] K. D. Benkstein, N. Kopidakis, J. van de Lagemaat, and A. J. Frank, "Influence of the Percolation Network Geometry on Electron Transport in Dye-Sensitized Titanium Dioxide Solar Cells," The Journal of Physical Chemistry B, vol. 107, pp. 7759-7767, 07/08/ 2003.
[111] I. Balberg, E. Savir, and J. Jedrzejewski, "The mutual exclusion of luminescence and transport in nanocrystalline silicon networks," Journal of Non-Crystalline Solids, vol. 338-340, pp. 102-105, 2004.
[112] I. Balberg, E. Savir, J. Jedrzejewski, A. G. Nassiopoulou, and S. Gardelis, "Fundamental transport processes in ensembles of silicon quantum dots," Physical Review B (Condensed Matter and Materials Physics), vol. 75, pp. 235329-8, 2007.
[113] H. Levi Aharoni, D. Azulay, O. Millo, and I. Balberg, "Anomalous photovoltaic effect in nanocrystalline Si/SiO[sub 2] composites," Applied Physics Letters, vol. 92, pp. 112109-3, 2008.
[114] S.-H. Choi and R. G. Elliman, "Negative photoconductivity in SiO2 films containing Si nanocrystals," Applied Physics Letters, vol. 74, pp. 3987-3989, 1999.
[115] B. Yang, J. D. Schaub, S. M. Csutak, D. L. Rogers, and J. C. Campbell, "10-Gb/s all-silicon optical receiver," Photonics Technology Letters, IEEE, vol. 15, pp. 745-747, 2003.
[116] S. J. Koester, C. L. Schow, L. Schares, G. Dehlinger, J. D. Schaub, F. E. Doany, and R. A. John, "Ge-on-SOI-Detector/Si-CMOS-Amplifier Receivers for High-Performance Optical-Communication Applications," J. Lightwave Technol., vol. 25, pp. 46-57, 2007.
[117] Y. Kaneko, N. Koike, K. Tsutsui, and T. Tsukada, "Amorphous silicon phototransistors," Applied Physics Letters, vol. 56, pp. 650-652, 1990.
[118] S. M. GadelRab and S. G. Chamberlain, "The source-gated amorphous silicon photo-transistor," Electron Devices, IEEE Transactions on, vol. 44, pp. 1789-1794, 1997.
[119] S. D. Brotherton, "Polycrystalline silicon thin film transistors," Semiconductor Science and Technology, vol. 10, pp. 721-738, 1995.
[120] Y. Y. Noh and D. Y. Kim, "Organic phototransistor based on pentacene as an efficient red light sensor," Solid State Electronics, vol. 51, pp. 1052-1055, 2007.
[121] Y.-Y. Noh, J. Ghim, S.-J. Kang, K.-J. Baeg, D.-Y. Kim, and K. Yase, "Effect of light irradiation on the characteristics of organic field-effect transistors," Journal of Applied Physics, vol. 100, pp. 094501-6, 2006.
[122] Y.-Y. Noh, D.-Y. Kim, Y. Yoshida, K. Yase, B.-J. Jung, E. Lim, and H.-K. Shim, "High-photosensitivity p-channel organic phototransistors based on a biphenyl end-capped fused bithiophene oligomer," Applied Physics Letters, vol. 86, pp. 043501-3, 2005.
[123] J.-M. Shieh, W.-C. Yu, J. Y. Huang, C.-K. Wang, B.-T. Dai, H.-Y. Jhan, C.-W. Hsu, H.-C. Kuo, F.-L. Yang, and C.-L. Pan, "Near-infrared silicon quantum dots metal-oxide-semiconductor field-effect transistor photodetector," Applied Physics Letters, vol. 94, pp. 241108-3, 2009.
[124] T. Noguchi, "Appearance of single-crystalline properties in fine-patterned Si thin film transistors (TFTs) by solid phase crystallization (SPC)," JAPANESE JOURNAL OF APPLIED PHYSICS PART 2 LETTERS, vol. 32, pp. 1584-1584, 1993.
[125] C. H. Kim, K.-S. Sohn, and J. Jang, "Temperature dependent leakage currents in polycrystalline silicon thin film transistors," Journal of Applied Physics, vol. 81, pp. 8084-8090, 1997.
[126] V. Foglietti, L. Mariucci, and G. Fortunato, "Temperature dependence of the transfer characteristics of polysilicon thin film transistors fabricated by excimer laser crystallization," Journal of Applied Physics, vol. 85, pp. 616-618, 1999.
[127] T.-K. Kim, G.-B. Kim, B.-I. Lee, and S.-K. Joo, "The effects of electrical stress and temperature on the properties of polycrystalline silicon thin-film transistors fabricated by metal induced lateral crystallization," Electron Device Letters, IEEE, vol. 21, pp. 347-349, 2000.
[128] H. Kavak and H. Shanks, "Stability of hydrogenated amorphous silicon thin film transistors on polyimide substrates," Solid-State Electronics, vol. 49, pp. 578-584, 2005.
[129] J. R. Ayres, S. D. Brotherton, I. R. Clarence, and P. J. Dobson, "Photocurrents in poly-Si TFTs," Circuits, Devices and Systems, IEE Proceedings, vol. 141, pp. 27-32, 1994.
[130] Y. H. Tai, Y. F. Kuo, and Y. H. Lee, "Photosensitivity Analysis of Low-Temperature Poly-Si Thin-Film Transistor Based on the Unit-Lux-Current," Electron Devices, IEEE Transactions on, vol. 56, pp. 50-56, 2009.
[131] A. K. Okyay, A. J. Pethe, D. Kuzum, S. Latif, D. A. Miller, and K. C. Saraswat, "SiGe optoelectronic metal-oxide semiconductor field-effect transistor," Opt. Lett., vol. 32, pp. 2022-2024, 2007.
[132] K.-H. Chen, C.-Y. Chien, and P.-W. Li, "Precise Ge quantum dot placement for quantum tunneling devices," Nanotechnology, vol. 21, p. 055302, 2010.
[133] R. D. Schaller and V. I. Klimov, "High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion," Physical Review Letters, vol. 92, p. 186601, 2004.
[134] A. J. Nozik, "Multiple exciton generation in semiconductor quantum dots," Chemical Physics Letters, vol. 457, pp. 3-11, 2008.
[135] R. D. Schaller, V. M. Agranovich, and V. I. Klimov, "High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states," Nature Physics, vol. 1, pp. 189-194, 2005.
[136] R. D. Schaller, M. Sykora, J. M. Pietryga, and V. I. Klimov, "Seven Excitons at a Cost of One: Redefining the Limits for Conversion Efficiency of Photons into Charge Carriers," Nano Letters, vol. 6, pp. 424-429, 2006.
[137] S. J. Kim, W. J. Kim, A. N. Cartwright, and P. N. Prasad, "Carrier multiplication in a PbSe nanocrystal and P3HT/PCBM tandem cell," Applied Physics Letters, vol. 92, pp. 191107-3, 2008.
[138] S. J. Kim, W. J. Kim, Y. Sahoo, A. N. Cartwright, and P. N. Prasad, "Multiple exciton generation and electrical extraction from a PbSe quantum dot photoconductor," Applied Physics Letters, vol. 92, pp. 031107-3, 2008.
[139] M. Law, M. C. Beard, S. Choi, J. M. Luther, M. C. Hanna, and A. J. Nozik, "Determining the Internal Quantum Efficiency of PbSe Nanocrystal Solar Cells with the Aid of an Optical Model," Nano Letters, vol. 8, pp. 3904-3910, 09/30/ 2008.
[140] V. Sukhovatkin, S. Hinds, L. Brzozowski, and E. H. Sargent, "Colloidal Quantum-Dot Photodetectors Exploiting Multiexciton Generation," Science, vol. 324, pp. 1542-1544, 6/19 2009.
[141] W. H. Chang, A. T. Chou, W. Y. Chen, H. S. Chang, T. M. Hsu, Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, and M. J. Tsai, "Room-temperature electroluminescence at 1.3 and 1.5 mm from Ge/Si self-assembled quantum dots," Applied Physics Letters, vol. 83, pp. 2958-2960, 2003.
指導教授 李佩雯(Pei-Wen Li) 審核日期 2010-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明