博碩士論文 91521043 詳細資訊


姓名 郭昭宏(Chao-Hung Kuo)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 量子力學等效電路模型之建立及其對元件模擬之探討
(An Equivalent Circuit Model of Quantum Mechanics and its Investigation to Device Simulation)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文是探討量子力學的物理特性與其在半導體元件上的模擬。為了描述量子力學模擬環境,首先我們必需開發一個有效率的特徵值與特徵向量的運算器來幫助我們解薛丁格波動方程式。這個高效率的運算器在本論文中稱之為QM-Solver。利用QM-Solver我們可以得到任意位能函數的特徵值和特徵向量,對於學習量子力學的原理,有很具體的幫助。其次,再配合我們建立的量子力學等效電路模型,來研究半導體元件中載子在量子井的運動情形。
摘要(英) In this thesis, we will study the quantum mechanics and its simulation on semiconductor devices. In order to handle the quantum mechanics simulation, we first need an efficient eigenvalue and eigenvector solver to help us solve the Schrödinger wave equation. This efficient solver in this thesis is called QM-solver. It is useful for us to study the quantum mechanics specifically by getting the eigenvalue and eigenvector from the QM-solver of any potential function. And the second, we use the equivalent circuit model of semiconductor device with quantum mechanics to observe the charge distribution in the quantum well.
關鍵字(中) ★ 量子力學等效電路
★ 元件模擬
關鍵字(英) ★ Quantum Mechanics
★ Equivalent Circuit Model
★ Device Simulation
論文目次 1. Introduction........................................................1
2. The Development of Quantum Mechanics Solver.........................3
2.1 Introduction....................................................3
2.2 The Zero-Determinant Method.....................................4
2.3 The Equivalent Circuit Model of Schrödinger Equation............6
3. The Simulation Results of the QM-Solver............................11
3.1 The Infinite Quantum Well......................................11
3.2 The Simple Harmonic Oscillator.................................16
3.3 The Potential-Energy Barrier...................................19
3.4 The Triangular and the Two-Well Forms of Quantum Well..........22
4. The Electron Distribution in MOS Capacitor with Quantum Effects
by the QM-Solver...................................................25
4.1 The Equivalent Circuit Model of Decoupled Method...............28
4.2 Physical Fundamentals of the Electron Distribution.............32
4.3 The Simulation of MOS Capacitor................................33
5. Conclusion.........................................................41
參考文獻 [1] D. A. Neamen, Semiconductor Physics & Devices, Chapter 2, McGraw-Hill, Inc., 1997.
[2] J. Sanny and W. Moebs, University Physics, Chapter 42, Times Mirror Higher Education Group, Inc., 1997.
[3] T. Janik and B. Majkusiak , “Analysis of the MOS transistor based on the self-consistent solution to the Schrodinger and Poisson equations and on the local mobility model,” IEEE Trans. Electron Devices, vol.45, p.1263 – 1271, 1998.
[4] H. C. Casey, Devices For Integrated Circuit, Chapter 7, John Wiley & Sons Inc., 1999.
[5] A. K. Ghatak, K. Thyagarajan, M.R. Shenoy “A novel numerical technique for solving the one-dimensional Schroedinger equation using matrix approach-application to quantum well structures,” IEEE Journal on Quantum Electronics, vol.24, p.1524 – 1531, 1988.
[6] S. Selberherr, Analysis and Simulation of Semiconductor Devices, New York: Springer, 1984.
[7] C.-L. Teng, “An equivalent circuit approach to mixed-level device and circuit simulation,” M. S. Thesis, Institute of EE, National Central University, Taiwan, Republic of China, Jun. 1997.
[8] J. W. Lee, “An equivalent circuit model for decoupled method in semiconductor device simulation,” M. S. Thesis, Institute of EE, National Central University, Taiwan, Republic of China, Jun. 2002.
指導教授 蔡曜聰(Yao-Tsung Tsai) 審核日期 2004-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡