博碩士論文 91521043 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:34.239.172.52
姓名 郭昭宏(Chao-Hung Kuo)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 量子力學等效電路模型之建立及其對元件模擬之探討
(An Equivalent Circuit Model of Quantum Mechanics and its Investigation to Device Simulation)
相關論文
★ 表面電漿共振效應於光奈米元件之數值研究★ 金氧半電容元件的暫態模擬之數值量測
★ 雙載子電晶體在一維和二維空間上模擬的比較★ 改善後的階層化不完全LU法及其在二維半導體元件模擬上的應用
★ 一維雙載子接面電晶體數值模擬之驗證及其在元件與電路混階模擬之應用★ 階層化不完全LU法及其在準靜態金氧半場效電晶體電容模擬上的應用
★ 探討分離式簡化電路模型在半導體元件模擬上的效益★ 撞擊游離的等效電路模型與其在半導體元件模擬上之應用
★ 二維半導體元件模擬的電流和電場分析★ 三維半導體元件模擬器之開發及SOI MOSFET特性分析
★ 元件分割法及其在二維互補式金氧半導體元件之模擬★ 含改良型L-ILU解法器及PDM電路表述之二維及三維元件數值模擬器之開發
★ 含費米積分之高效率載子解析模型及其在元件模擬上的應用★ 適用於二維及三維半導體元件模擬的可調變式元件切割法
★ 整合式的混階模擬器之開發及其在振盪電路上的應用★ 用時域模擬法探討S參數及其應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文是探討量子力學的物理特性與其在半導體元件上的模擬。為了描述量子力學模擬環境,首先我們必需開發一個有效率的特徵值與特徵向量的運算器來幫助我們解薛丁格波動方程式。這個高效率的運算器在本論文中稱之為QM-Solver。利用QM-Solver我們可以得到任意位能函數的特徵值和特徵向量,對於學習量子力學的原理,有很具體的幫助。其次,再配合我們建立的量子力學等效電路模型,來研究半導體元件中載子在量子井的運動情形。
摘要(英) In this thesis, we will study the quantum mechanics and its simulation on semiconductor devices. In order to handle the quantum mechanics simulation, we first need an efficient eigenvalue and eigenvector solver to help us solve the Schrödinger wave equation. This efficient solver in this thesis is called QM-solver. It is useful for us to study the quantum mechanics specifically by getting the eigenvalue and eigenvector from the QM-solver of any potential function. And the second, we use the equivalent circuit model of semiconductor device with quantum mechanics to observe the charge distribution in the quantum well.
關鍵字(中) ★ 量子力學等效電路
★ 元件模擬
關鍵字(英) ★ Quantum Mechanics
★ Equivalent Circuit Model
★ Device Simulation
論文目次 1. Introduction........................................................1
2. The Development of Quantum Mechanics Solver.........................3
2.1 Introduction....................................................3
2.2 The Zero-Determinant Method.....................................4
2.3 The Equivalent Circuit Model of Schrödinger Equation............6
3. The Simulation Results of the QM-Solver............................11
3.1 The Infinite Quantum Well......................................11
3.2 The Simple Harmonic Oscillator.................................16
3.3 The Potential-Energy Barrier...................................19
3.4 The Triangular and the Two-Well Forms of Quantum Well..........22
4. The Electron Distribution in MOS Capacitor with Quantum Effects
by the QM-Solver...................................................25
4.1 The Equivalent Circuit Model of Decoupled Method...............28
4.2 Physical Fundamentals of the Electron Distribution.............32
4.3 The Simulation of MOS Capacitor................................33
5. Conclusion.........................................................41
參考文獻 [1] D. A. Neamen, Semiconductor Physics & Devices, Chapter 2, McGraw-Hill, Inc., 1997.
[2] J. Sanny and W. Moebs, University Physics, Chapter 42, Times Mirror Higher Education Group, Inc., 1997.
[3] T. Janik and B. Majkusiak , “Analysis of the MOS transistor based on the self-consistent solution to the Schrodinger and Poisson equations and on the local mobility model,” IEEE Trans. Electron Devices, vol.45, p.1263 – 1271, 1998.
[4] H. C. Casey, Devices For Integrated Circuit, Chapter 7, John Wiley & Sons Inc., 1999.
[5] A. K. Ghatak, K. Thyagarajan, M.R. Shenoy “A novel numerical technique for solving the one-dimensional Schroedinger equation using matrix approach-application to quantum well structures,” IEEE Journal on Quantum Electronics, vol.24, p.1524 – 1531, 1988.
[6] S. Selberherr, Analysis and Simulation of Semiconductor Devices, New York: Springer, 1984.
[7] C.-L. Teng, “An equivalent circuit approach to mixed-level device and circuit simulation,” M. S. Thesis, Institute of EE, National Central University, Taiwan, Republic of China, Jun. 1997.
[8] J. W. Lee, “An equivalent circuit model for decoupled method in semiconductor device simulation,” M. S. Thesis, Institute of EE, National Central University, Taiwan, Republic of China, Jun. 2002.
指導教授 蔡曜聰(Yao-Tsung Tsai) 審核日期 2004-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明