博碩士論文 91523021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.218.172.249
姓名 許淳勝(CHUN-SHENG HSU)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 在微觀移動環境下有效資源保留之路徑管理研究
(A Study of Efficient RSVP Path Management Under Micro-mobility Environment)
相關論文
★ 應用MSPP至DWDM都會光纖網路的設計★ 光網路與WiMAX整合架構研究及其簡化雛型實驗
★ 以Linux系統為基礎之NAT效能優化研究及其實作★ 光波長劃分多工網路之路徑保護機制研究
★ 標籤交換網路下具有服務品質路由安排之研究★ 以訊務相關性為基礎的整合性服務可調整QoS排程器之研究
★ 以群體播送支援IPv6環境下移動式網路連結更新之研究★ 無線區域網路資源動態分配之效能研究
★ 無線網路交握程序之預先認證方法分析與比較★ 無線區域網路虛擬允入控制之研究
★ IPv6環境下移動網路之連結更新程序及其效能之研究★ 具有限數量波長轉換節點的分波多工網路之群播波長分配與容量計算研究
★ 階層化行動式IPv6移動錨點選擇機制研究★ 具高能量移動節點之叢集式感測網路 效能研究
★ 預先註冊之快速換手階層化行動式IPv6研究★ 分波多工網際網路之跨層保護技術研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來由於網際網路以及無線網路的快速發展,造成人們對於網路應用服務的需求也相對的日益增加。因此如何有效的運用網路頻寬以及提供服務品質保證成為了目前網際網路所面臨的重要問題。在本文中我們先對目前現有的資源保留機制作一些簡單的介紹,這些機制包含了如何在Macro-domain以及Micro-domain 中提供品質服務保證。其中包含了Pointer Forwarding、Crossover Router Discovery 等機制,這些機制都是為了改善使用者在移動時路徑資源重新保留的速度以及網路頻寬的使用效率,其主要目的在於提供使用者無縫隙的換手服務。其中Pointer Forwarding的方法提供了相當快速的換手服務但卻相對的使用了過度的頻寬,而Crossover Router Discovery的方法則是針對在樹狀拓樸下提供快速的換手以及有效的頻寬資源保留。接著在本文中我們提出了三種混合式的資源保留機制,這三個機制融合的各種方法的各種特性。透過模擬的結果顯示,我們所提出的資源保留機制不論在網路資源的使用上以及換手的速度上都提供了相當優異的效能。
摘要(英) Recently, progress of wireless communication technology has made people easily access wireless network via various kinds of portable devices (PDA, Cell Phone, Notebook, etc.). Due to the fast growing of wireless network deployment, human can access wireless network easily, and it also stimulates the population of using mobile services. However, people always claim for stable quality of service (Qos), especially when users are accessing real-time or multimedia applications during movement. In this thesis, we introduce several existing schemes to deal with this issue, which includes Pointer Forwarding scheme and Crossover Router Scheme. These schemes are used for supporting seamless Qos handoff under micro-mobility domain. Then, based on the above schemes, we propose three hybrid methods to combine the advantages of those related schemes. Furthermore, we carry out our simulation results and show the performance of the proposed schemes. From the simulation results we found that the Pointer Forwarding can support fast handoff but in lack of efficiency of using link bandwidth. The Crossover Router Scheme can reserve link bandwidth more efficient than Pointer Forwarding scheme. Overall, the simulation results show that our proposed hybrid schemes can support seamless and efficient RSVP branch path rerouting during handoff.
關鍵字(中) ★ 服務品質
★ 無線網路
★ 移動式網路管理
★ 混合式資源頻寬保留
★ 服務品質換手
關鍵字(英) ★ Qos Handoff
★ Hybrid Schemes for Resource Reservation
★ Qos
★ Wireless Network
★ Mobility Management
論文目次 TABLE OF CONTENTS I
LIST OF FIGURES IV
LIST OF TABLES VII
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 BACKGROUND 4
2.1 MOBILITY MANAGEMENT 4
2.1.1 Macro-Mobility 5
2.1.2 Micro-Mobility Architecture 8
2.1.3 Cellular IP 9
2.1.4 Hawaii 9
2.1.5 Hierarchical Mobile IP 10
2.1.6 Hierarchical Mobile IPv6 12
2.2 IP QOS SCHEMES 13
2.3 RSVP 14
2.4 PROBLEM OF RSVP UNDER THE MOBILE SCENARIO 15
2.5 RSVP EXTENSIONS FOR MACRO-MOBILITY 16
2.5.1 MRSVP 16
2.5.2 RSVP Tunnel 18
2.6 RSVP EXTENSIONS FOR MICRO-MOBILITY 19
CHAPTER 3 DESIGN PRINCIPLES AND APPROACHES 23
3.1 DESIGN CONSIDERATIONS 23
3.1.1 Soft Handoff in Cellular Systems 24
3.1.2 Advance Resource Reservation of an RSVP Branch Path 25
3.2 QOS HANDOFF RELATED APPROACHES 26
3.2.1 RSVP Path Rerouting by Gateway Router Scenario 27
3.2.2 RSVP Path Rerouting by Crossover Router Scenario 29
3.2.3 RSVP Path Rerouting by Pointer Forwarding Scenario 32
3.3 HYBRID RESOURCE RESERVATION MECHANISMS 34
3.3.1 Scheme 1 - Combining PF and GW Scenarios 35
3.3.2 Scheme 2 - Combining PF and CR Scenarios 39
3.3.3 Scheme 3 - Combining CR and GW Scenarios 42
3.4 EXAMPLE OF MOVEMENT MODEL 45
3.4.1 Modeling the Micro-mobility Behavior of a Mobile Node 45
3.4.2 Analysis of Handoff Delay and Links Usage 46
CHAPTER 4 EXPERIMENTAL SIMULATION AND DISCUSSION 51
4.1 SIMULATION ARCHITECTURE 51
4.1.1 Simulation Parameters 52
4.2 SIMULATION SCENARIOS 56
4.2.1 RSVP Path Rerouting by GW Algorithm 56
4.2.2 RSVP Path Rerouting by CR Algorithm 58
4.2.3 RSVP Path Rerouting by PF Algorithm 59
4.2.3 RSVP Path Rerouting by Scheme 1 and Scheme 2 60
4.2.4 RSVP Path Rerouting by Scheme 3 62
4.3 EXPERIMENTAL RESULT AND ANALYSIS 63
4.3.1 Estimation of system performance 64
4.3.2 Simulation Result of Handoff Delay Time 67
4.3.3 Simulation Result of Bandwidth Usage 76
4.3.4 Simulation Result of Drop Probability 79
4.3.5 Simulation Result of Efficiency 83
CHAPTER 5 CONCLUSIONS AND FUTURE WORKS 93
REFERENCES 95
APPENDIX A 98
SIMULATION TOPOLOGIES 98
List of Figures
Figure 2-1 SIP Basic Procedure 6
Figure 2-2 Pre-call Mobility by SIP 6
Figure 2-3 Mid-call Mobility by SIP 7
Figure 2-4 Registration at the GFA and Home Agent 11
Figure 2-5 Regional registration at the GFA 11
Figure 2-6 Operation of HMIPv6 12
Figure 2-7 Exchanging Message in RSVP 14
Figure 2-8 Reservation routers for MRSVP 18
Figure 2-9 RSVP Tunnel with Mobile IP 19
Figure 2-10 Intra-subnet and Inter-subnet Handoff 20
Figure 2-11 The Hierarchical MRSVP Scheme 21
Figure 2-12 An RSVP-enabled Router in an IP Micro-mobility Network 22
Figure 3-1 RSVP Path Reservation by threshold of pilot strength 26
Figure 3-2 An Example of RSVP Path Rerouting by Gateway Router 27
Figure 3-3 Signaling Messages for Path rerouting by GW during Handoff 29
Figure 3-4 An Example of RSVP branch Path Rerouting by CR Router 31
Figure 3-5 Signaling Messages for Path rerouting by CR during Handoff 32
Figure 3-6 An Example of RSVP branch Path Rerouting by PF 33
Figure 3-7 Signaling Messages for Path Rerouting by Scheme 1 37
Figure 3-8 An Example of RSVP branch Path Rerouting by Scheme 1 38
Figure 3-9 Signaling Messages for Path Rerouting by Scheme 2 41
Figure 3-10 An Example of RSVP branch Path Rerouting by Scheme 2 42
Figure 3-11 Signaling Messages for Path Rerouting by Scheme 3 44
Figure 3-12 State-transition-rate Diagram for the Mobility Behavior of MN 45
Figure 3-13 Comparisons of Mean Handoff Delay for Rerouting RSVP Connection under Micro-mobility Domain 48
Figure 3-14 Comparisons of Mean Length of Links Used to Hold a RSVP Connection under Micro-mobility Domain 49
Figure 4-1 Flow Chart of RSVP Path Rerouting by GW Algorithm 57
Figure 4-2 Flow Chart of RSVP Path Rerouting by CR Algorithm 58
Figure 4-3 Flow Chart of RSVP Path Rerouting by PF Algorithm 60
Figure 4-4 Flow Chart of RSVP Path Rerouting by Scheme1 or Scheme 2 61
Figure 4-5 Flow Chart of RSVP Path Rerouting by Scheme 3 63
Figure 4-6 (a) Delay VS MN Number (Binary Tree Level 3) 69
Figure 4-6 (b) Delay VS MN Number (Binary Tree Level 4) 70
Figure 4-6 (c) Delay VS MN Number (Binary Tree Level 5) 70
Figure 4-6 (d) Delay VS MN Number (Mesh Tree Level 3) 71
Figure 4-6 (e) Delay VS MN Number (Mesh Tree Level 4) 71
Figure 4-6 (f) Delay VS MN Number (Mesh Tree Level 5) 72
Figure 4-7 (a) Delay VS MN Number (PF) 73
Figure 4-7 (b) Delay VS MN Number (GW) 73
Figure 4-7 (c) Delay VS MN Number (CR) 74
Figure 4-7 (d) Delay VS MN Number (Scheme 1) 74
Figure 4-7 (e) Delay VS MN Number (Scheme 2) 75
Figure 4-7 (f) Delay VS MN Number (Scheme 3) 75
Figure 4-8 (a) Total Usage VS MN Number (Binary Tree Level 3) 76
Figure 4-8 (b) Total Usage VS MN Number (Binary Tree Level 4) 77
Figure 4-8 (c) Total Usage VS MN Number (Binary Tree Level 5) 77
Figure 4-8 (d) Total Usage VS MN Number (Mesh Tree Level 3) 78
Figure 4-8 (e) Total Usage VS MN Number (Mesh Tree Level 4) 78
Figure 4-8 (f) Total Usage VS MN Number (Mesh Tree Level 5) 79
Figure 4-9 (a) Drop Probability VS MN Number (Binary Tree Level 3) 80
Figure 4-9 (b) Drop Probability VS MN Number (Binary Tree Level 4) 81
Figure 4-9 (c) Drop Probability VS MN Number (Binary Tree Level 5) 81
Figure 4-9 (d) Drop Probability VS MN Number (Mesh Tree Level 3) 82
Figure 4-9 (e) Drop Probability VS MN Number (Mesh Tree Level 4) 82
Figure 4-9 (f) Drop Probability VS MN Number (Mesh Tree Level 5) 83
Figure 4-10 (a) Efficient VS MN Number (Binary Tree Level 3) 84
Figure 4-10 (b) Efficient VS MN Number (Binary Tree Level 4) 85
Figure 4-10 (c) Efficient VS MN Number (Binary Tree Level 5) 85
Figure 4-10 (d) Efficient VS MN Number (Mesh Tree Level 3) 86
Figure 4-10 (e) Efficient VS MN Number (Mesh Tree Level 4) 86
Figure 4-10 (f) Efficient VS MN Number (Mesh Tree Level 5) 87
Figure 4-11 Numerical Results vs. Simulation Results (Delay) 92
Figure 4-11 Numerical Results vs. Simulation Results (Usage) 93
Figure A-1 Simulation Topology (Binary Tree Level 3) 99
Figure A-2 Simulation Topology (Binary Tree Level 4) 99
Figure A-3 Simulation Topology (Binary Tree Level 5) 100
Figure A-4 Simulation Topology (Mesh Tree Level 3) 100
Figure A-5 Simulation Topology (Mesh Tree Level 4) 101
Figure A-6 Simulation Topology (Mesh Tree Level 5) 101
List of Tables
Table 4-1 Environment Parameters 54
Table 4-2 Average control packet latency (in ms) 55
Table 4-3 Evaluation of RSVP path handoff delay time 64
Table 4-4 Evaluation of total bandwidth usage 66
Table 4-5 Evaluation of Efficiency 67
Table 4-6 Efficient VS MN Number (Binary Tree Level 3) 87
Table 4-7 Efficient VS MN Number (Binary Tree Level 4) 88
Table 4-8 Efficient VS MN Number (Binary Tree Level 5) 88
Table 4-9 Efficient VS MN Number (Mesh Tree Level 3) 89
Table 4-10 Efficient VS MN Number (Mesh Tree Level 4) 89
Table 4-11 Efficient VS MN Number (Mesh Tree Level 5) 90
Table 4-12 Numerical Result and Simulation Result (Handoff Delay) 91
Table 4-13 Numerical Result and Simulation Result (Mean Link Length) 92
參考文獻 [1] R. Braden et al.,“Resource Reservation Protocol (RSVP), Version 1 Functional Specification,” RFC 2205, Sep. 1997.
[2] AT. Cambell and J. Gomez, “IP Micro-Mobility Protocols,” ACM SIGMOBILE Comp. and Commun. Rev., vol. 4, no.4, Oct. 2001, pp. 45-54.
[3] C. Perkins, Ed., “IP Mobility Support for IPv4”,Internet RFC 3344, Aug. 2002.
[4] D. B. Johnson and C. Perkins, “Route Optimization in Mobile IP,” Internet draft, draft-ietf-mobileip-optim-09, work in progress, Feb. 2000.
[5] J. Rosenberg et. al., “SIP: Session Initiation Protocol,” IFTF RFC 2543, June 2002.
[6] H. Schulzrinne and E. Wedland, “Application-layer Mobility using SIP,” ACM SIGMOBILE Comp. and Commun. Rev., vol.4, no. 3, July 2000, pp. 47-57.
[7] N. Nakajima et. al, “ Handoff Delay Analysis and Measurement for SIP based mobility in IPv6,” IEEE Per. Commun.Sys. and WLANs, May 2003, pp. 1085-1089.
[8] P. DE Silva and H. Sirisena, “A Mobility Management Protocol For IP-Based Cellular Networks,” IEEE Wireless Commun., June 2002, pp. 31-37.
[9] A. T. Campbell et. al, “Comparison of IP Micromobility Protocols,” IEEE Wireless Commun., Feb. 2002, pp. 72-82.
[10] N. Banerjee et. al, “Mobility Support in Wireless Internet,” IEEE Wireless Commun., Oct. 2003, pp. 54-61.
[11] A. Valko, “Cellular IP: A New Approach to Internet Host Mobility,” ACM SIGMOBILE Comp. and Commun. Rev. , vol. 29, no.1, Jan. 1999, pp. 50-65.
[12] R. Ramjee et. al., “HAWAII: A Domain-Base Approach for Supporting Mobility in Wide-Area Wireless Networks,” ACM Trans. On Networking, vol.10 no.3, June 2002, pp. 396-410.
[13] E. Gustafsson and A. Jonsson and C. Perkins, “Mobile IPv4 Regional Registration”, Internet draft, draft-ietf-mobileip-reg-tunnel-08, Nov. 2003.
[14] H.Soliman et. al., “Hierarchical MIPv6 Mobility Management,” Internet drft, drft-ieft-mipshop-hmipv6-01.txt, Feb. 2004.
[15] A.K. Taludar, B.R. Bardinath and A. Acharya, “Integrated Services Packet Network with Mobile Host: architecture and performance,” Wireless Network 2, 1999, pp. 111-124.
[16] A.K. Taludar, B.R. Bardinath and A. Acharya, “MRSVP: a resource reservation protocol for an integrated service network with mobile host,” Wireless Network 5, 2001, pp. 5-19.
[17] Terzis, M. Srivastava, and L. Zhang, “A Simple QoS Signaling Protocol for Mobile Hosts in Integrate Services Internet,” INFOCOM ’99, vol. 3, 1999, pp. 1011-1018.
[18] R. Jain et al., “Mobile IP with Location Registers (MIP-LR),” Internet draft, drat-jain-miplr-01.txt,” July 2001.
[19] CHIEN-CHAO TSENG et al., “HMRSVP: A Hierarchical Mobile RSVP Protocol, ” Wireless Network 9, 2003, pp. 95-102.
[20] D. Zappala and J. Kann, “RSRR: A Routing Interface for RSVP,” Internet draft, draft-ieft-rsvp-routing-02.txt, June 1998.
[21] D.Wong and T. J. Jim, “Soft Handoffs in CDMA Mobile Systems,” IEEE Per. Commun., Dec. 1997, pp.6-17.
[22] J. W. Chang and D. K. Sung, “Adaptive Channel Reservation Scheme for Soft Handoff in DS-CDMA Cellular System,” IEEE Trans. Vehic. Tech., vol. 50, no. 2, Mar 2001.
[23] B. Moon and A. H. Aghvami, “Reliable RSVP Path Reservation for Multimedia Communication under an IP Micro-mobility Scenario,” IEEE Wireless Commun., Oct. 2002, pp. 93-99.
[24] D. Wong and T. J. Jim, “Soft Handoffs in CDMA Mobile Systems,” IEEE Pers. Commun., Dec. 1997, pp. 6-17.
[25] Gwo-Chung Lee, Tsan-Pin Wang and Chien-Chao Tseng, “Resource Reservation with Pointer Forwarding Schemes for the Mobile RSVP,” IEEE Commun. Letter, vol. 5, no. 7, July 2001, pp. 298-300.
[26] B. Moon and A. H. Aghvami, “Seamless Switching of RSVP Branch Path for Soft Handoff in All-IP Wireless Networks,” IEICE Trans. Commun., vol. E86-B, no. 6, June 2003, pp. 2051-2055.
[27] B. Moon and A. H. Aghvami, “Efficient RSVP Path Management in IP Micro Mobility Environments,” IEICE Trans. Commun., vol. E86-B, no. 5, May 2003, pp.1710-1714.
[28] A. Neogi and T. Chiueh, “Performance Analysis of an RSVP-Capable Router,” IEEE Net., Sept. 1999. pp.1-20
[29] B. Moon and A. H. Aghvami, “RSVP Extensions for Real-time Services in Wireless Mobile Networks,” IEEE Commun., Dec. 2001, pp. 2-9.
指導教授 陳彥文(Yen-Wen Chen) 審核日期 2004-6-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明