博碩士論文 91523029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:18.207.238.169
姓名 梁恭豪(Kung-Hao Liang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統
(High Linearity and Low-Power RF CMOS Mixers for Wireless Communication)
相關論文
★ 增強型異質結構高速移導率電晶體大信號模型之建立及其在微波放大器之應用★ 空乏型暨增強型Metamorphic HEMT之製作與研究
★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製
★ 氧化鋁基板上微波功率放大器之研製★ 氧化鋁基板上積體化微波降頻器電路之研製
★ 順序特徵結構設計研究及其應用在特徵模子去耦合與最小特徵值靈敏度★ 順序特徵結構設計研究及其應用在最大強健穩定度與最小迴授增益
★ LDMOS功率電晶體元件設計、特性分析及其模型之建立★ CMOS無線通訊接收端模組之設計與實現
★ 積體化微波被動元件之研製與2.4GHz射頻電路設計★ 異質結構高速移導率電晶體模擬、製作與大訊號模型之建立
★ 氧化鋁基板微波電路積體化之2.4 GHz接收端模組研製★ 氧化鋁基板上積體化被動元件及其微波電路設計與研製
★ 二維至三維微波被動元件與射頻電路之設計與研製★ CMOS射頻無線通訊發射端電路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 論文最前面的部份,提出一個疊接形式的雙閘極金氧半場效電晶體模型。此大訊號模型包含了兩個傳統的BSIM3v3做為內部非線性模型,而外部被動網路則是由具有物理意義為基礎的寄生元件所組成。這些位於閘極、源極以及汲極上,所寄生的電阻、電感則是利用量測到的S參數計算萃取出來。所建立的雙閘極元件模型在小訊號S參數以及功率特性上,模擬與量測結果頻率從50 MHz ~ 15 GHz則是相當的吻合。最後並設計了雙閘極2.4 GHz的低雜訊放大器以及混波器用以驗證所提出模型的準確性。此外,論文裡提出了一個新穎的三次轉導相消的方法,並且設計於一個2.4 GHz的射頻混波器上改善電路的線性度。由於基極到源極的偏壓大小可以改變三次轉導鋒值的位置,將兩顆具有正負三次轉導鋒值的電晶體,以並聯的方式連接這樣即可以達到三次轉導相消的結果。元件的量測結果顯示,鄰近頻道功率比以及輸入三次調變失真點都改善了15 dB。在混波器的設計方面,由於轉導級是貢獻混波器非線性特徵的來源,將具有三次轉導補償的元件取代混波器的轉導級做設計即可達到線性度的改善。最後量測結果顯示,鄰近頻道功率比以及輸入三次調變失真點分別改善了10 dB以及15 dB。 論文另一個部份,提出了一個具有6 GHz寬頻低電壓以及低功率操作的降頻混波器架構。並且以標準的0.18微米金氧半場效電晶體製程實現。這個新穎的混波器是利用疊接的架構以及基極端注入的技術,達成低電壓以及低功率的電路特性。此混波器當工作頻率在2.4 GHz時,具有6 dB的電路增益以及單端頻帶雜訊指數15.2 dB,而線性度方面輸入三次調變失真點為0 dBm。此外,電路核心所需的面積只要0.15 × 0.23 mm2。當中頻頻率固定為100 MHz時,量測到的射頻3-dB頻寬可以從0.5 GHz到6 GHz。在最佳的工作電壓0.7 V操作下,電路只需要0.4 mA的電流損耗。如此低電壓以及低功率操作特性,可以與高階製程技術90或是60奈米製程等相互比較。 論文最後一個部份,設計了一個具有高品質係數的主動式電感。在一般常用的疊接式架構上增加了一個回授電阻以及調整增益的電晶體,如此一來主動式電感的品質係數將可以改善增加。此新穎的主動式電感操作在4.3 GHz時具有3.2 nH的電感值以及最大540的品質係數。最後並利用主動式電感設計了一個主動式的帶通濾波器,此濾波器具有很低的傳輸衰減值0.2 dB反射損耗32 dB,並且濾波器中心頻率經由電壓的改變可以從3.45 GHz調整到3.6 GHz。
摘要(英) This thesis covers the design of low-power high-linearity CMOS mixers. In the first part of this dissertation, a cascode dual-gate CMOS model is presented. The proposed large-signal model consists of two intrinsic conventional BSIM3v3 nonlinear models and the passive network represents the physical-based parasitic components of the device. The extrinsic elements of substrate networks, and the distributed resistances and inductances of gate, source and drain terminals are calculated from the measured S-parameters. Good agreement form 50 MHz to 15 GHz has been obtained between simulation and measurement of small-signal S-parameters and power characteristics. In order to verify the model accuracy, a 2.4 GHz dual-gate LNA and mixer were designed and tested. Moreover, a new third-order transconductance (gm3) cancellation technique is proposed and applied to a 2.4 GHz conventional RF mixer for improving circuit linearity. The bulk-to-source voltage is applied to adjust the peak value position of gm3. The cancellation of gm3 is utilized by a negative peak gm3 transistor combining in parallel with a positive peak gm3 transistor. For a single device, the measured adjacent channel power ratio (ACPR) and third-order intermodulation (IMD3) distortion are both improved over 15 dB. The compensated gm3 device is placed in the input RF gm-stage, thus reducing the principle nonlinearity source of the mixer. From the experiment results, the ACPR and IMD3 of the mixer are improved about 10 dB and 15 dB, respectively. An ultra broadband low-voltage low-power down-conversion mixer using a 0.18-µm standard CMOS process is also presented. The proposed mixer uses a novel cascode topology with a bulk-injection technique to achieve low-voltage and low-power performance. The mixer features a maximum conversion gain of 6 dB at radio frequency (RF) of 2.4 GHz, a single-side band (SSB) noise figure of 15.2 dB, and an input IP3 of 0 dBm. Moreover, the chip area of the mixer core is only 0.15 × 0.23 mm2. The measured 3-dB RF frequency bandwidth is from 0.5 to 6 GHz with an intermediate frequency (IF) of 100 MHz. The optimum dc supply voltage (VDD) can be scaled down to 0.7 V with a 0.4 mA drain current. The supply voltage and dc power of this circuit can be compatible with an advanced 90-nm or 60-nm CMOS technology. In the last part of this dissertation, a high quality-factor active inductor has been demonstrated. By adding a feedback resistance and a regulated gain stage transistor into the conventional cascade-grounded approach, the quality-factor and performance of CMOS active inductor can be improved. This novel active inductor demonstrated a maximum quality-factor of 540 and a 3.2 nH inductance at 4.3 GHz, where the self-resonant frequency was 5.4 GHz. An active CMOS band-pass filter was also fabricated including this tunable high quality factor active inductor, giving an insertion loss of 0.2 dB and a return loss more than 32 dB with a tuning range from 3.45 GHz to 3.6 GHz.
關鍵字(中) ★ 低電壓
★ 低功率
★ 線性度
★ 高頻模型
★ 無線通訊
★ 混波器
關鍵字(英) ★ CMOS
★ BSIM
★ wireless communication
★ linearity
★ low-power
★ low-voltage
★ mixer
論文目次 Abstract ........................................................................................................................I
Figure captions...........................................................................................................VII
Table captions.................................................................................................................X
Chapter 1 Introduction .................................................................................................1
1.1 Motivation .........................................................................................................1
1.2 Literature Survey ...............................................................................................3
1.3 Contribution.......................................................................................................4
1.3 Thesis Organization ...........................................................................................6
Chapter 2 Dual-Gate CMOS RF Large-Signal Model...............................................8
2.1 Introduction .......................................................................................................8
2.2 Dual-Gate Model Description and Extraction Methodology ............................9
2.3 Dual-gate Model Prediction Results................................................................19
2.4 Dual-Gate Topology Design Principle.............................................................19
2.5 Circuits Verification and Measurement Results ..............................................26
2.6 Summary..........................................................................................................31
Chapter 3 High Linearity RF CMOS Mixer Design ................................................32
3.1 Introduction......................................................................................................32
3.2 Review of Linearization Techniques ...............................................................33
3.2.1. Transistor-level linearization technique...................................................34
3.2.2 Circuit-level linearization technique ........................................................39
3.3 New Gm3 Cancellation Technique....................................................................44
3.3.1 The measurement IIP3 and ACPR............................................................48
3.4 High Linearity Gilbert-cell Mixer Design.......................................................50
3.4.1 Experimental Results of the High Linear Mixer ......................................51
3.5 Summary..........................................................................................................53
Chapter 4 Low-voltage Low-power RF Mixer Design .............................................54
4.1 Introduction .....................................................................................................54
4.2 Mixer Fundamentals........................................................................................55
4.3 Microwave Gilbert-Cell mixer ........................................................................57
4.4 Bulk-injection Mixer .......................................................................................61
4.4.1 Circuit Design and Methodology .............................................................61
4.4.2 Experimental Results of Bulk-injection Mixer.........................................64
4.5 Cascode with Bulk-injection Mixer.................................................................66
4.5.1 Mixer core and Operation Principle .........................................................67
4.5.2 Mixer Structure and Performance Analysis..............................................70
4.5.3 Experimental Results of the Novel Cascode Mixer..................................80
4.6 Summary..........................................................................................................83
Chapter 5 CMOS RF Active Inductors Apply to Tunable Active Filter.................85
5.1 Introduction .....................................................................................................85
5.2 Basic Concepts of Active Inductor Architectures............................................86
5.3 A Novel High Quality-Factor Active Inductor Design ....................................93
5.3.1 Circuit Architecture and Design Principle................................................93
5.3.2 Characteristics of the Fabricated CMOS Active Inductor ........................97
5.4 Tunable Active Band –Pass Filter Design .......................................................99
5.5 Summary........................................................................................................103
Chapter 6 Conclusions ..............................................................................................104
References...................................................................................................................106
Publication List..........................................................................................................120
參考文獻 [1] B. Razavi, RF microelectronics, Prentice Hall Inc, New York, 1998. [2] G. D. Vendelin, A. M. Pavio and U.L. Rohade, Design of Microwave Circuits Using Linear and Nonlinear Techniques, 2nd Edition, Wiley, 2005. . [3] S. A. Maas, Nonlinear microwave and RF circuits, Boston, MA, Artech House, 2003. [4] B. Gilbert, “A prise four-quadrant multiplier with subnanosecond reponse,”IEEE J. Solid-State Circuits, vol. SC-3, pp. 365-373, Dec. 1968. [5] B. Gilbert, “The MICROMIXER: a highly linear variant of the Gilbert mixer using a bisymmetric Class-AB input stage,” IEEE J. Solid-State Circuits, vol. 32, no. 9, pp. 1412-1423, Sept. 1997. [6] M. Ogawa, K. Ohata, T. Furutsuka, and N. Kawamura, “Submicron Single-Gate and Dual-Gate GaAs MESFET’S with Improved Low Noise and High Gain Performance,” IEEE Trans. Microwave Theory Tech., vol. 24, no. 6 pp. 300–305, Jun. 1976. [7] J. R. Scott, and R. A. Minasian, “A Simplified Microwave Model of the GaAs Dual-Gate MESFET,” IEEE Trans. Microwave Theory Tech., vol. 32, no. 3 pp. 243–248, Mar. 1984. [8] C. Licaurish, M J. Howes, and C. M. Snowden, “A New Method for Dual-Gate GaAs MESFET,” IEEE Trans. Microwave Theory Tech., vol. 37, no. 10 pp. 1497–1505, Mar. 1989. [9] M. Schoon, “A Novel, Bias-Dependent, Small-Signal Model of the Dual-Gate MESFET,” IEEE Trans. Microwave Theory Tech., vol. 42, no. 2 pp. 212–216, Feb. 1994. 106
[10] M. Ibrahim, B. Syrett, and J. Bennett, “Simple and Accurate Technique for Extracting the Parasitic Resistances of the Dual-Gate GaAs MESFET,” IEEE Microwave Wireless Compon. Lett, vol. 12, no. 8 pp. 284–286, Aug. 2002. [11] J. P. Mondal, A. G. Milnes, J. G. Oakes, and S. K. Wang, “Phase Shifters in Single- and Dual-Gate GaAs MESFET’s for 2-4-GHz Quadrature Phase Shifters,” IEEE Trans. Microwave Theory Tech., vol. 32, no. 10 pp. 1280–1288, Oct. 1984. [12] T. Sugiura, K. Honjo and T. Tsuji, “12-GHz-Band GaAs Dual-Gate MESFET Monolithic Mixers,” IEEE Trans. Microwave Theory Tech., vol. 33, no. 2, pp. 105–110, Feb. 1985. [13] C. A. Liechti, “Performance of Dual-Gate GaAs MESFET’s as Gain-Controlled Low-Noise Amplifiers and High-Speed Modulators,” IEEE Trans. Microwave Theory Tech., vol. 23,no. 6, pp. 461–469, Jun. 1975. [14] R. G. Meyer, R. Eschenbach, and W. M. Edgerley, “A wide-band feedforward amplifier,” IEEE Journal of Solid-State Circuits, vol. 9, pp. 422–428, Dec. 1974. [15] E. E. Eid and F. M. Ghannouchi, “Adaptive nulling loop control for1.7 GHz feedforward linearization systems,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 83–86, Jan. 1997. [16] Y. Kim and S. Lee, “Linearized mixer using predistortion technique,” IEEE Microwave Wireless Compon. Lett., vol. 12, pp. 204–205, June 2002. [17] Y. Yang, Y. Y. Woo and B. Kim, “New Predistortion Linearizer Using Low-Frequency Even-Order Intermodulation Components,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 2, pp. 446–452, Feb. 2002. [18] K. Choi, D. H. Shin, and C. P. Yue, “A 1.2 V 5.8-mW, Ultra-Wideband Folded Mixer in 0.13-µm CMOS,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp., Jun. 2007. 107
[19] F. C. Chang, P. C. Huang, S. F. Chao and H. Wang, “A Low Power Folder Mixer for UWB System Applications in 0.18-µm CMOS Technology,” IEEE Microwave Wireless Compon. Lett., vol. 17, no. 5, pp. 367–369, May 2007. [20] B. G. Perumana, S. Chakraborty, C. H. Lee, and J. Laskar, “A Subharmonic CMOS Mixer Based on Threshold Voltage Modulation,” in 2005 IEEE MTT-S Int. Microwave Symp. Dig., June 2005, pp. 12-17. [21] C. Y. Lee, T. S. Chen, J. D. S. Deng, and C. H. Kao, “A Simple Systematic Spiral Inductor Design With Perfected Q Improvement for CMOS RFIC Application,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 523–528, Feb. 2005. [22] M. Park, S. Lee, C. S. Kim, H. K. Yu, and K. S. Nam, ”The Detailed Analysis of High CMOS-Compatible Microwave Spiral Inductors in Silicon Technology,” IEEE Trans. on Electron Devices, vol. 45, no. 9, pp. 1953–1959, Sep. 1998. [23] M. C. Hsieh, Y. K. Fang, C. H. Chen, S. M. Chen, and W. K. Yeh, “Design and Fabrication of Deep Submicron CMOS Technology Compatible Suspended High-Q Spiral Inductors,” IEEE Trans. on Electron Devices, vol. 51, no. 3, pp. 324–331, Mar. 2004. [24] Y. Wu, X. Ding, M. Ismail, H. Olsson, “RF Bandpass Filter Design Base on CMOS Active Inductors,” IEEE Trans. on circuits and systems, vol. 50, no. 12, pp. 942–949, Dec. 2003. [25] S. Lucyszyn and I. D. Robertson, “Monolithic narrow-band filter using ultrhigh-Q tunable active inductors,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 2617–2622, Dec. 1994. [26] L. H. Lu, H. H. Hsieh, and Y. T. Liao, “A Wide Tuning-Range CMOS VCO With a Differential Tunable Active Inductor,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 9, pp. 3462–3468, Sep. 2006. 108
[27] H. H. Hsieh, Y. T. Liao and L. H. Lu, “A Compact Quadrature Hybrid MMIC Using CMOS Active Inductors,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 6, pp. 1098–1104, Jun. 2007. [28] L.-H. Lu, Y.-T. Liao, and C.-R.Wu, “A miniaturizedWilkinson power divider with CMOSactive inductors,” IEEE Microw.Wireless Compon. Lett., vol. 15, no. 11, pp. 775–777, Nov. 2005. [29] J.-S. Ko and K. Lee, “Low power, tunable active inductor and its applications to monolithic VCO and BPF,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 1997, pp. 929–932. [30] J. N. Yang, M. J. Wu, and C. Y. Lee, “Loss compensation in RF CMOS Active Inductor Using a Capacitor,” IEICE Trans. Electronic, vol. E87-C, no. 12, pp. 2198-2201, Dec. 2004. [31] M. Zargari, D. Su, C.P. Yue, S. Rabii, D. Weber, B. Kaczynski, S. Mehta, K. Singh, S. Mendis, and B. Wooley, “A 5-GHz CMOS Transceiver for IEEE 802.11a Wireless LAN,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1688-1694, Dec. 2002. [32] S. K. Reynolds, B. A. Floyd, T. Beukema, T. Zwick, U. Pfeiffer, and H. Ainspan, ”A Direct-Conversion Receiver IC for WCDMA Mobile Systems,” IEEE J. Solid-State Circuits, vol. 38, no.9, pp. 1555-1560, Sep. 2003. [33] F. O'Mahony, C. P. Yue, M. A. Horowitz, S. S. Wong, "A 10-GHz Global Clock Distribution Using Coupled Standing-Wave Oscillators," IEEE Journal of Solid-State Circuits, vol. 38, no. 11, pp. 1813-1820, November 2003. [34] B. A. Floyd, S. K. Reynolds, T. Zwick, L. Khuon, T. Beukema, and U. R. Preiffer, “WCDMA direct-conversion receiver front-end comparison in RF-CMOS and SiGe BiCMOS,” IEEE Trans. Microwave Theory Tech, vol. 53, no. 4, pp. 1181-1188, Apr.. 2005.
109
[35] Q. Huang, P. Orsatti, and F. Piazza, “GSM transceiver front-end circuits in 0.25-µm CMOS,” IEEE Journal of Solid-State Circuits, vol. 34, no.3, pp. 292-303, Mar. 1999. [36] A. Liscidini, M. Brandolini, Davide Sanzogni, and R. Castello, ”0.13 µm CMOS Front-End, for DCS1800/UMTS/ 802.11b-g With Multiband Positive Feedback Low-Noise Amplifier,” IEEE Journal of Solid-State Circuits, vol. 41, no. 4, pp. 981-989, Apr. 2006. . [37] G. Montagna, G. Gramegna, I. Bietti, M. Franciotta, A. Baschirotto, P. D. Vita, R. Pelleriti, M. Paparo, and R. Castello, “A 35-mW 3.6-mm2 Fully Integrated 0.18-_m CMOS GPS Radio,” IEEE Journal of Solid-State Circuits, vol. 38, no. 7, pp. 1163-1171, Jul. 2003. [38] Z. Li, R. Quintal, and K. O. Kenneth, ”A Dual-Band CMOS Front-End With Two Gain Modes for Wireless LAN applications,” IEEE Journal of Solid-State Circuits, vol. 39, no. 11, pp. 2069-2073, Nov. 2004. [39] B. Razavi, “A 60-GHz CMOS Receiver Front-End” IEEE Journal of Solid-State Circuits, vol. 41, no. 1, pp. 17-22, Jan. 2006. [40] P. Sivonen, J. Tervaluoto, N. Mikkola, and A. Parssinen, “A 1.2-V RF Front-End With On-Chip VCO for PCS 1900 Direct Conversion Receiver in 0.13-µm CMOS,” IEEE Journal of Solid-State Circuits, vol. 41, no. 2, pp. 384-394, Feb. 2006. [41] G. Cusmai, M. Brandolini, P. Rossi, and F. Svelto, “A 0.18-µm CMOS Selective Receiver Front-End for UWB Applications,” IEEE Journal of Solid-State Circuits, vol. 41, no. 8, pp. 1764-1771, Aug.. 2006. [42] X. Guan, and A. Hajimiri, “A 24-GHz CMOS Front-End, ”IEEE Journal of Solid-State Circuits, vol. 39, no. 2, pp. 368-373, Feb.. 2004. 110
[43] R. Fujimoto, K. Kojima, and S. Otaka, “A 7-GHz 1.8-dB NF CMOS Low-Noise Amplifier “, IEEE J. Solid-State Circuits, vol. 37, no.7, pp. 852-856, Jul. 2002. [44] P. J. Sullivan, B. A. Xavier, and W. H. Ku, “Doubly Balanced Dual-Gate CMOS Mixer,” IEEE J. Solid-State Circuits, vol. 34, no.6, pp. 878-881, Jun. 1999. [45] W. R. Deal, M. Biedenbender, P. H. Lin, J. Uyeda, M. Siddiqui, and R. Lai, “Design and Analysis of Broadband Dual-Gate Balanced Low-Noise Amplifiers” IEEE J. Solid-State Circuits, vol. 42, no.10, pp. 2107-2115, Oct. 2007. [46] K. H. Liang, and Y. J. Chan, “A 0.18 µm Dual-Gate CMOS Model for the Design of 2.4 GHz Low Noise Amplifier,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp., Jun. 2006. [47] C. W. Kuo, C. C. Hsiao, C. C. Ho, and Y. J. Chan, “Scalable large-signal model of 0.18 µm CMOS process for rf power predictions,” Solid-State Electronics, vol 47, pp. 77-81, 2002. [48] C. C. Ho, C. W. Kuo, C. C. Hsiao, and Y. J. Chan, “A 0.18 µm p-MOSFET large-signal RF model and its application on MMIC design” Solid-State Electronics, vol 47, pp. 1117-1122, 2003. [49] W. Liu, R. Gharpurey, M. C. Chang, U. Erdogan, R. Aggarwal and J. P. Mattia, “RF MOSFET modeling accounting for distributed substrate and channel resistances with emphasis on the BSIM3v3 SPICE model”, in Technical Digest of Electron Devices Meeting, pp. 309–312, 1997. [50] J. J. Ou, X. Jin, I. Ma, C. Hu and P. R. Gray, “CMOS RF modeling for GHz communication IC’s”, in Technical Digest of VLSI Technology, pp. 94-95, 1998. [51] D. H. Shin, and C. P. Yue, “A Unified Modeling and Design Methodology for RFICs Using Parameterized Sub-Circuit Cells,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp., Jun. 2006. 111
[52] S. H. M. Jen, C. C. Enz, D. R. Pehlke, M. Schroter and B. J. Sheu, “Accurate modeling and parameter extraction for MOS transistors valid up to 10 GHz,” IEEE Trans. Electron Devices, vol. 46, pp. 2217-2227, 1999. [53] D. K. Shaeffer, and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS Low Noise Amplifier,” IEEE J. Solid-State Circuits, vol. 32, no.5, pp. 745-759, May 1997. [54] C. Ariyavisitakul and T.-P. Liu “Characterizing the effects of nonlinear amplifiers on linear modulation for digital portable radio communications” IEEE Trans. Veh. Technol., vol. 39 no. 4, pp. 383-389, Nov. 1990. [55] T. J. Ellis, “A modified feed-forward technique for mixer linearization,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 1998, pp. 1423–1426. [56] Y. Kim, Y. Kim, and S. Lee, “Linearized mixer using predistortion technique,” IEEE Microwave Wireless Compon. Lett, vol. 12, no. 6, pp. 204–205, Jun. 2002. [57] K. K. M. Cheng and C.F. Au-Yeung, “Novel difference-frequency dual-signal injection method for CMOS mixer linearization” IEEE Microwave Wireless Compon. Lett, vol. 14, no. 7, pp.358–360, Jul. 2004. [58] I. Kwon and K. Lee, ”An integrated low power highly linear 2.4-GHz CMOS receiver front-end based on current amplification and mixing,” IEEE Microwave Wireless Compon. Lett, vol. 15, no. 1, pp.36–38, Jan. 2005. [59] Y. Yang and B. Kim, “A new linear amplifier using low-frequency second-order intermodulation component feedforwarding,” IEEE Microwave Guided Wave Lett., vol. 9, no. 10, pp. 419–421, 1999. [60] D. Su and W. McFarland, “An IC for linearizing RF power amplifiers using envelope elimination and restoration,” IEEE J. Solid-State Circuits, vol. 33, pp. 2252–2258, Dec. 1998. [61] T. W. Kim, B. Kim, and K. Lee, “Highly Linear Receiver Front-End Adoping
112
MOSFET Transconductance Linearization by Multiple Gate Transistors” IEEE J. Solid-State Circuits, vol. 39,no.1, pp. 223–229, Jan. 2004. [62] C.-C. Yen and H.-R. Chuang, “A 0.25-µm 20-dBm 2.4-GHz CMOS power amplifier with an integrated diode linearizer,” IEEE Microwave Wireless Compon. Lett., vol. 13, pp. 45–47, Feb. 2003. [63] Y. Tsividis, Operation and Modeling of the MOS Transistor. , Singapore: McGraw-Hill, 1999. [64] S. Kang, B. Choi, and B. Kim, “Linearity analysis of CMOS for RF application,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 3, pp. 972–977, Mar. 2003. [65] C. Wang, M. Vaidyanathan, and L. E. Larson, “A capacitance-compensation technique for improved linearity in CMOS class AB power amplifier,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1927–1937, Nov. 2004. [66] P. H. Woerlee, M.J. Knitel, R.V. Langevelde, D.B.M. Klaassen, L.F. Tiemeijer, A.J. Scholten, and T.A.Z. Duijnhoven , “RF-CMOS performance trends,” IEEE Trans. Electron Devices, vol. 48, pp. 1776-1782, Aug. 2001. [67] B. Kim, J. Ko, and K. Lee, “A New Linearization Technique for MOSFET RF Amplifier Using Multiple Gated Transisotrs,” IEEE Microwave and Guided Wave Lett, vol. 10, no. 9, pp.371–373, Jan. 2000. [68] A. Katz, “Linearization: reducing distortion in power amplifiers,” IEEE Microwave Magazine, vol. 2, no. 4, pp. 37-49, Dec 2001. [69] K. Yamauchi, K. Mori, M. Nakayama, Y. Mitsui and T. Takagi, “A microwave miniaturized linearizer using a parallel diode with a bias feed resistance,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 12, pp. 2431–2435, Dec. 1997. [70] Moon-Suk Jeon, et al., “A new active predistortion with high gain using cascode-FET structures,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp., Jun. 2003, pp. 253-256.
113
[71] C. Haskins, T. Winslow and S. Raman, “FET diode linearizer optimization for amplifier predistortion in digital radios,” IEEE Microwave and Guided Wave Lett, vol. 10, no. 1, pp.21–23, Jan. 2000. [72] M. Johansson and T. Mattson, “Transmitter Linearization Using Cartesian Feedback for Linear TDMA Modulation,” Proc. IEEE Veh. Tech.Conf., pp. 439-444, May 1991. [73] H. Seidel, “A microwave Feedforward Experiment,” Bell System Technical J. vol. 50, pp. 2879-2916, Nov. 1971. [74] R. G. Meyer, R. Eschenbach, and W. M. Edgerley, “A Wideband Feedforward Amplifier,” IEEE J. Solid-State Circuits, vol. 9, no. 11, pp. 422–488, Dec. 1974. [75] S. Tanaka, F. Behbahani, and A. A. Abidi, “ A linearization technique for CMOS RF power amplifiers,“ in IEEE Symp. VLSI Circuits Dig. Technical Papers, 1997, pp. 93-94. [76] S. A. Mass and D. Neilson, “Modeling GaAs MESFET’s for intermodulation analysis of mixer and amplifiers,” IEEE Trans. Microwave Theory Tech., vol. 38, pp. 1964-1971, Dec 1990. [77] M. T. Terrovitis and R. G. Meyer, “Intermodulation distortion in current- commutating CMOS mixers,” IEEE J. Solid-State Circuits, vol. 35, pp.1461-1473, Oct. 2000. [78] H. M. J. Boots, G. Doornbos, and A. Heringa,”Scaling of Characteristic Frequencies in RF CMOS”, IEEE Trans. Electron Devices, vol. 51 no. 12 , pp. 2102-2108, Dec. 2004. [79] P. J. Sullivan, B. A. Xavier and W. H. Ku, “Low Voltage Performace of a Microwave CMOS Gilbert Cell Mixer, “IEEE J. Solid-State Circuits, vol. 32, no. 7, pp. 1151-1155, July. 1997.
114
[80] M. Harada, T. Tsukahara and J. Yamada, “0.5-1V 2GHz RF Front-end Circuits in CMOS/SIMOX,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2000, pp. 378–379. [81] X. Wang, R. Weber, and D. Chen, “A novel 1.5 V CMFB CMOS down-conversion mixer design for IEEE 802.11a WLAN systems,” in Proc, IEEE Int. Symp. Circuits Systems (ISCAS), vol. 4, pp. IV-373-6, May 2004. [82] M. Goldfarb, E. Balboni, and J. Cavery, “Even Harmonic double-balanced active mixer for use in direct conversion receivers,” IEEE J. Solid-State Circuits, vol. 38, no. 10, pp. 1762-1766, Oct. 2003. [83] T. K. K. Kan, K. C. Mak, D. Ma, and H. C. Luong, ”A 2-V 900-MHz CMOS mixer for GSM receivers,” in Proc, IEEE Int. Symp. Circuits Systems (ISCAS), vol. 1, pp. 327-330, May 2000. [84] C.-C. Tang, W.-S. Lu, L.-D. Van, and W.-S. Feng, “A 2.4-GHz CMOS down-conversion doubly balanced mixer with low supply voltage,” in Proc, IEEE Int. Symp. Circuits Systems (ISCAS), vol. 4, May 2001, pp. 794-797. [85] C. G. Tan, ”A high-performance low-power CMOS double-balanced IQ down-conversion mixer for 2.45-GHz ISM band application,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp., Jun. 2003, pp. 457-460. [86] C. Hermann, M. Tiebout and H. Klar, “A 0.6-V 1.6-mW Transformer-Based 2.5-GHz Downconversion Mixer With +5.4-dB Gain and -2.8-dBm IIP3 in 0.13-µm CMOS,” IEEE Trans. Microwave Theory Tech, vol. 53, no. 2, pp. 488-495, Feb. 2005. [87] L. Liu and Z. Wang, “Analysis and Design of a Low-Voltage RF CMOS Mixer,” IEEE Trans. Circuit and Systems-II, vol. 53, no. 3, pp. 212-216, Mar. 2006. 115
[88] M.-F. Hung, C.-J. Kuo, and S.-Y. Lee, “A 5.25-GHz CMOS Folded-Cascode Even-Harmonic Mixer for Low-Voltage Applications,” IEEE Trans. Microwave Theory and Tech, vol. 54, no. 2, pp. 660-669, Feb. 2006. [89] V. Vidojkovic, J. V. D. Tang, A. Leeuwenburgh, and A. H. M. V. Roermund,“A Low-voltage folded-switching mixer in 0.18-µm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1259-1264, Jun. 2005. [90] Eric A. M. Klimperink, M. Louwsma, Gerard J. M. Wienk, and Barm Nauta,“A CMOS switched transconductor mixer, “IEEE J. Solid-State Circuits, vol. 39, no. 8, pp. 1231-1240, Aug. 2004. [91] F. Mahmoudi, and C.A. T. Salama, “8 GHz, 1 V, High Linearity, Low Power CMOS Active Mixer,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Symp., Jun. 2004, pp. 401-404. [92] H. M. Wang, “ A 1 V multigigahertz RF mixer core in 0.5 µm CMOS”, IEEE Journal of Solid-State Circuit, vol. 33, no. 12, pp. 2265-2267, Dec. 1998. [93] G. Kathiresan, C. Toumazou,“A Low Voltage Bulk Driven Downconversion Mixer Core,” in Proc, IEEE Int. Symp. Circuits Systems (ISCAS), vol. 2, May 1999, pp. 598-601. [94] A. N. Karanicolas, “A 2.7-V 900-MHz CMOS LNA and mixer,” IEEE J. Solid-State Circuits, vol. 31, pp. 1939-1944, Dec. 1996. [95] M. T. Terrovitis and R.G. Meyer, “Noise in Current-Commutation CMOS Mixer,” IEEE J. Solid-State Circuit, vol. 34, no. 6, pp. 772-783, Jun. 1999. [96] H. Darabi and A. A. Abidi, “Noise in RF-CMOS mixers: A simple physical model” IEEE J. Solid-State Circuit, vol. 35, no. 1, pp. 15-25, Jan. 2000. [97] J. N. Burghartz, K. A. Jenkins and M. Soyuer, “Multilevel-spiral inductors using VLSI interconnect technology”, IEEE Electron Device Letters, vol. 17, pp. 428-430, Sept. 1996.
116
[98] M. Park, S. Lee, H. K. Yu, J. G. Koo and K. S. Nam, “High Q CMOS-compatible microwave inductors using double-metal interconnection silicon technology”, IEEE Microwave and Guided Wave Letters, vol. 7, pp. 45-47, Feb. 1997. [99] P. Q. Chen and Y. J. Chan, “Improved microwave performance on low-resistivity Si substrates by Si+ ion implantation”, IEEE Trans. Microwave Theory Tech., vol. 48, pp. 1582 –1585, Sep. 2000. [100] S. Hara and T. Tokumitsu, “Monolithic microwave active inductors and their applications”, Digest of IEEE International Symposium on Circuits and Systems, pp.1857-1860, vol.3, June 1991. [101] S. G. El Khoury, “New approach to the design of active floating inductors in MMIC technology”, IEEE Trans. Microwave Theory Tech., Vol. 44, April 1996, pp. 505−512. [102] A. Pascht, J. Fischer and M. Beeroth, “A CMOS low noise amplifier at 2.4 GHz with active inductor load”, Silicon Monolithic Integrated Circuits in RF Systems, 2001, pp. 1−5. [103] G. Mascarenhas, J. Caldinhas Vaz and J. Costa Freire, “CMOS active inductors for L band”, Asia-Pacific Microwave Conference, 2000, pp. 157−160. [104] J. N. Yang, Y. C. Cheng, T. Y. Hsu, T. R. Hsu and C. Y. Lee, “A 1.75 GHz inductor-less CMOS low noise amplifier with high-Q active inductor load”, Midwest Symposium on Circuits And Systems, Vol. 2, 2001, pp. 816−819. [105] U. Yoaprasit and J. Ngarmnil, “Q-Enhancement technique for RF CMOS active inductor,” in Proc, IEEE Int. Symp. Circuits Systems (ISCAS), Vol. 5, pp. 592-598, 2000. [106] Chen-Yi Lee, Jyh-Neng Yang, and Yi-Chang Cheng, “Improving RF CMOS Active Inductor by Simple Loss Compensation Network,” IEICE Transaction Communication, Vol. E87-B, No. 6, pp. 2195-2198, June 2004. 117
[107] T. K. Lin, and A. J. Payne, “Design of a Low-Voltage, Low-Power, Wide-Tuning Integrated Oscillator,” in Proc, IEEE Int. Symp. Circuits Systems (ISCAS), pp. V-629-V-632, 2000. [108] H. Hayashi, M. Muraguchi, Y. Umeda, and T. Enoki, “A high-Q broad-band active inductor and its application to a low-loss analog phase shifter”, IEEE Transactions on Microwave Theory and Techniques, pp.2369-2374, vol. 44, no.12, Dec. 1996. [109] P. Alinikula, R. Kaunisto, and K. Stadius, “Monolithic active resonators for wireless applications”, Digest of IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium, pp.197-200, May 1994. [110] S. Lucyszyn and I.D.Robertson, “Monolithic narrow-band filter using ultrahigh-Q tunable active inductors”, IEEE Transactions on Microwave Theory and Techniques, pp.2617-2622, vol.42, no.12, Dec. 1994. [111] I. E. Ho and R. L. Van Tuyl, “Inductorless monolithic microwave amplifiers with directly cascaded cells”, in Tech. Digest of IEEE MTT-S symposium, vol. 1, May 1990, pp 515−518. [112] A. Thanachayanont and A. Payne, “ VHF CMOS integrated active inductor”, Electronics Letters, Vol. 32, May 1996, pp. 999−1000. [113] C.C. Hsiao, C.W. Kuo, C.C. Ho, and Y.J. Chan, “Improved Quality-Factory of 0.18-µm CMOS Active Inductor by a Feedback Resistor Design”, IEEE Microwave and Wireless Components Letters, vol.12, pp. 467-469, Dec. 2002. [114] H. J. Orchard, “Gyrator circuits,” in active Filters: Lumped, Distributed, Integrated, Digital and Parametric, L. P. Huelsman, Ed. New York: McGraw-Hill, 1970, pp.90-127 [115] Y. T. Wang and A. Abidi, “CMOS active filter design at very high frequency”, IEEE J. Solid-State Circuits, SC-25 (6), pp. 1562-1574, Dec. 1990.
118
[116] Derek K. Shaeffer, Avin R. Shahani, S.S.Mohan, Hirad Samavati, Hamid R. Rategh, Maria del Mar Hershenson, Mix Xn, C. Patrick Yue, Deaiel J. Eddleman and Thomas H. Lee, “A 115-mW, 0.5-µm CMOS GPS Receiver With Wide Dynamic-Range Active Filters” IEEE J. Solid-State Circuits, vol. 33, pp. 2219-2230, Dec. 1998. [117] M. Ismail, R. Wassenaar, and W. Morrison, “A High-Speed Continuous-Time Bandpass VHF Filter In MOS Technology,” in Proc, IEEE Int. Symp. Circuits Systems (ISCAS), vol. 3, pp. 1761 -1764, April 1991. [118] Y. Wu, X. Ding, M. Ismail, and H. Olsson, “Inductorless CMOS RF bandpass filter,” Electron.Lett.,, vol. 37, No. 16, pp. 1027-1028, April 2001. [119] Y. Wu, X. Ding, M. Ismail, and H. Olsson, “A novel CMOS fully differential inductorless RF bandpass filter,” IEEE Int. Symp. Circuits Systems (ISCAS), vol. 4, pp. 149-152, 2000.
指導教授 詹益仁、張鴻埜
(Yi-Jen Chan、Hong-Yeh Chang)
審核日期 2008-9-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明