博碩士論文 91523041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.226.150.175
姓名 黃伯廷(Po-Ting Hwang)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 多輸入多輸出正交分頻多工系統之調適性通道估測
(An adaptive channel estimation scheme for MIMO OFDM system)
相關論文
★ 利用手持式手機工具優化行動網路系統於特殊型活動環境★ 穿戴裝置動態軌跡曲線演算法設計
★ 石英諧振器之電極面設計對振盪頻率擾動之溫度相依性研究★ 股票開盤價漲跌預測
★ 感知無線電異質網路下以不完美頻譜偵測進行資源配置之探討★ 大數量且有限天線之多輸入多輸出系統效能分析
★ 具有元學習分類權重轉移網路生成遮罩於少樣本圖像分割技術★ 具有注意力機制之隱式表示於影像重建 三維人體模型
★ 使用對抗式圖形神經網路之物件偵測張榮★ 基於弱監督式學習可變形模型之三維人臉重建
★ 以非監督式表徵分離學習之邊緣運算裝置低延遲樂曲中人聲轉換架構★ 基於序列至序列模型之 FMCW雷達估計人體姿勢
★ 基於多層次注意力機制之單目相機語意場景補全技術★ 應用於3GPP WCDMA-FDD上傳鏈路系統的遞迴最小平方波束合成犛耙式接收機
★ 調適性遠時程瑞雷衰退通道預測演算法設計與性能比較★ 智慧型天線之複合式到達方位-時間延遲估測演算法及Geo-location應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 多輸入及多輸出正交分頻多工系統能在無線通訊中增加傳送資料容量。而對於頻率選擇性的衰退通道下,系統需要知道通道的參數資訊,以便於解回傳送的信號。本論文中,我們提出一種使用最佳訓練序列(training sequence)的調適性遞迴最小平方演算法(RLS)去估測通道,以改進其效能及降低複雜度。它是利用先前我們已經計算出的通道參數去幫助我們估測通道,而不去計算複雜度較高的反矩陣。最後,模擬結果也顯示出在較低的信號雜訊比(SNR)和較小的都卜勒頻率下,有較佳的均方誤差(MSE)和位元錯誤率(BER)。
摘要(英) Multiple-input and multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems can be used to increase capacity in wireless communication. For the frequency-selective fading channel in wireband system, it is required to know the knowledge of channel parameters. In this thesis, we propose an adaptive recursive least-square (RLS) algorithm using optimum training sequences for channel estimation to improve the performance and reduce the complexity. Instead of tracking a large matrix inversion, we exploit the information of channel parameters that we have calculated to estimate the channel. Simulation results prove that the mean square error (MSE) performance of channel estimation and bit error rate (BER) are better with low signal- to-noise ratio (SNR) and low Doppler frequency.
關鍵字(中) ★ 調適性通道估測
★ 訓練序列
★ 遞迴最小平方演算法
★ 多輸入多輸出正交分頻多工
關鍵字(英) ★ training sequence
★ RLS
★ MIMO OFDM
★ adaptive channel estimation
論文目次 Contents
Contents I
List of Figures III
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Organization 3
Chapter 2 Introduction to OFDM Architecture 6
2.1 Multicarrier Modulation 6
2.2 OFDM Introduction and Block Diagram 7
2.3 Design of the OFDM Signal 10
2.3.1 Guard Interval 11
2.3.2 Windowing 12
2.4 Advantages and Disadvantages of OFDM System 13
Chapter 3 MIMO OFDM System Model 14
3.1 MIMO OFDM System Model 14
3.2 Characteristics of Time-Varying Channel Statistic 15
3.2.1 Multipath Propagation 15
3.2.2 Channel Statistics 17
3.2.3 Delay Profiles 19
3.3 Channel Equalization and Signal Demodulation 21
Chpater 4 Adaptive Channel Estimation 24
4.1 Basic of Channel Parameter Estimation 24
4.2 Optimum training sequence 27
4.3 Adaptive Channel Estimation 28
Chapter 5 Simulation Results 33
5.1 Description of Simulation 33
5.2 Simulation Results 34
5.2.1 Comparison between different adaptive channel estimation algorithms 34
5.2.2 Comparison between different channel estimation algorithms 44
Chapter 6 Conclusions 58
REFERENCE 59
參考文獻 [1] Y. (G) Li, N. Seshadri, and S. Ariyavisitakul, “Channel estimation for OFDM systems with transmitter diversity in mobile wireless channels,” IEEE J. Select. Areas Commun., vol. 17, pp. 461-471, Mar. 1999.
[2] Y. (G) Li, “Simplified channel estimation for OFDM systems with multiple transmit antennas,” IEEE Trans. Wireless Commun., vol. 1, pp. 67-75, Jan. 2002.
[3] I. Barhumi, G. Leus, M. Moonen, “Optimal training design for MIMO OFDM systems in mobile wireless channels,” IEEE Trans. Signal Processing, vol. 51, pp.1615-1624, June 2003.
[4] Y. (G) Li, L. J. Cimini Jr., and N. R. Sollenberger, “Robust channel estimation for OFDM systems with rapid dispersive fading channels,” IEEE Trans. Commun., vol. 46, pp. 902-915, July 1998.
[5] H. Sari, G. Karam, and I. Jeanclaude, “Transmission techniques for digital terrestrial TV broadcasting,” IEEE Commum. Mag., vol. 33, pp. 100-109, Feb. 1995.
[6] H. Minn, D. I. Kim, V. K. Bhargava, “A reduced complexity channel estimation for OFDM systems with transmit diversity in mobile wireless channels,” IEEE Trans. Commun., vol. 50, pp. 799-807, May 2002.
[7] R. Steele, Mobile Radio Communications. New York: IEEE Press, 1992.
[8] M. D. Batariere, J. F. Kepler, T. P. Krauss, S. Mukthavaram, J. W. Porter, F. W. Vook, “An experimental OFDM system for broadband mobile communications,” in Proc. 54th IEEE Veh. Technol. Conf., pp. 1947-1951, Oct. 2001.
[9] IEEE 802.11a, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHZ Band,” IEEE 802.11a, 1999.
[10] J. G. Proakis, “Digital Communication,” 4th ed., New York, McGraw-Hill, 2000.
[11] S. Haykin, “Adaptive Filter Theory,” 4th ed., Prentice Hall, Englewood Cliffs, NJ. 2002.
[12] K. Witrisal, “OFDM Air-Interference Design for Multimedia Communications,” Ch. 4, Ph. D. Thesis, Delft University of Technology, The Netherlands, April 2002.
[13] J. Mannerkoski, D. P. Taylor, “Blind equalization using least- squares lattice prediction,” IEEE Trans. Signal Processing, vol. 47, pp. 630-639, Mar. 1999.
[14] L. Tong, G. Xu, and T. Kailath, “Blind identification based on second-order statistic: A frequency-domain approach, ” IEEE Trans. Inform. Theory, vol. 41, pp. 329-334, Jan. 1995.
[15] S. Coleri, M. Ergen, A. Puri, A. Bahai, “Channel estimation techniques based on pilot arrangement in OFDM systems,” IEEE Trans. Broadcasting, vol. 48, Sept. 2002.
[16] M. Engels, “Wireless OFDM Systems: How to make them work?” IMEC, Belgium, 2002.
[17] R. Van Nee, R. Prasad, “OFDM for Wireless Multimedia Com- munications,” Artech House, Boston-London, 2000.
指導教授 陳永芳(Yung-Fang Chen) 審核日期 2004-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明