博碩士論文 91523056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:54.237.249.90
姓名 方健剛(Chien-Kang Fang)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 用於非同調區塊編碼MPSK之Chase演算法
(The Chase Algorithms for Noncoherent Block Coded MPSK)
相關論文
★ 具有快速改變載波相位之籬柵編碼MPSK 的非同調解碼★ 用於非同調解碼之多層次編碼調變
★ 么正空間時間籬柵碼之解碼演算法★ 由多層次編碼所架構之非同調碼
★ 用於非同調檢測之與空時區塊碼連結的區塊編碼調變★ 用於正交分頻多工系統具延遲處理器的空時碼
★ 用於非同調區塊編碼MPSK之A*解碼演算法★ 在塊狀衰退通道上的籬柵么正空時調變
★ 使用決定回授檢測之相差空時調變的 一種趨近同調特性★ 具延遲處理器的空時碼之軟式輸入輸出遞迴解碼
★ 用於非同調區塊編碼MPSK的最大可能性解碼演算法★ 具頻寬效益之非同調調變
★ 非同調空時渦輪碼★ 循環字首及補零正交分頻多工系統經預編碼後之頻譜比較
★ 循環字首及補零正交分頻多工系統在時序同步上之效能比較★ 用於廣義非同調區塊編碼MPSK的解碼演算法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本篇論文中首先將探討Chase演算法並且比較這些演算法的特性和優缺點。因為當初Chase演算法是被設計用於使用二位元正相反訊號的傳輸架構上,這對於現今使用MPSK或QAM當作訊號星座集的編碼調變架構是不適合的。我們將Chase演算法推廣使其可以適用在任何使用振幅/相位星座集的傳輸架構上,並且定義了一個新的信心測度。信心測度表示一個接收訊號的可靠度。
多級解碼一般使用以籬柵為基礎的維特比解碼法則。但在有些情形下,解碼會非常的複雜甚至不可能實現。非同調區塊編碼MPSK就有這個問題存在。一個使用Chase演算法的多級解碼在這篇論文中將被探討。根據每一層元件碼的不同特性,我們可以使用不同的解碼法則來處理不同層級的解碼。如此一來,多級解碼的實現將會更加靈活並且容易被實現。
摘要(英) In this thesis, the Chase algorithms are studied and compared with each other. Since these algorithms are originally designed for binary antipodal signals, they are not appropriate for modern coded modulation schemes that utilize MPSK or QAM. We generalize the Chase algorithms for signals of any amplitude/phase modulated constellations and propose a new definition of confidence measurement.
In general, the trellis-based Viterbi algorithm is directly perceived for multistage decoding. However, it becomes prohibitively complex and impractical to implement in some situations. This problem also occurs in NBC-MPSK modulation. Herein, a more flexible multistage decoding utilizing the Chase algorithms is proposed. Different algorithms could be employed for relative levels in accordance with the properties of component codes. Consequently, the performance of the multistage decoding is more ingenious and acceptable.
關鍵字(中) ★ 多層次編碼調變
★ 區塊編碼調變
★ Chase演算法
★ 非同調解碼
★ 多級解碼
★ 信心測度
關鍵字(英) ★ Chase algorithm
★ confidence measurement
★ multistage decoding
★ noncoherent detection
★ multilevel coded modulation
★ block coded modulation
論文目次 1 Introduction 1
2 Reviews of NBC-MPSK and the Chase Algorithms 4
2.1 Introduction ............................................................................... 4
2.2 A Review of NBC-MPSK .......................................................... 5
2.2.1 Noncoherent Detection .......................................................... 5
2.2.2 Encoding of NBC-MPSK .................................................... 6
2.2.3 Decoding of NBC-MPSK ................................................... 13
2.3 A Review of the Chase algorithms .......................................... 18
2.3.1 Chase Algorithm 1 ............................................................... 23
2.3.2 Chase Algorithm 2 ............................................................... 23
2.3.3 Chase Algorithm 3 ............................................................... 23
3 Further Study on Chase Algorithms 24
3.1 Introduction .............................................................................. 24
3.2 A New Decision Rule for Chase Algorithms ............................ 25
3.3 Comparison among Various Algorithms .................................. 29
3.3.1 A study on Chase Algorithm 1 ............................................. 29
3.3.2 A study on Chase Algorithm 2 ............................................. 33
3.3.3 A study on Chase Algorithm 3 and Limited-Trial Chase
decoding ............................................................................... 36
3.3.4 Simulations and Comparisons .............................................. 37
3.4 Conclusions .............................................................................. 42
4 Chase Algorithms for NBC-MPSK 44
4.1 Introduction .............................................................................. 44
4.2 Chase-Based Multistage Decoding .......................................... 45
4.3 Simulation Results ................................................................... 52
5 Conclusions and Future Works 63
References 65
參考文獻 [1] G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Trans. Inform. Theory, vol. 28, pp. 55-67, Jan 1982.
[2] R. Knopp and H. Leib, “M-ary phase coding for the noncoherent AWGN channel,” IEEE Trans. Inform. Theory, vol. 40, pp. 1968-1984, Nov. 1994.
[3] F. W. Sun and H. Leib, “Multiple-phase codes for detection without carrier phase reference,” IEEE Trans. Inform. Theory, vol. 44, pp. 1477-1491, July 1998.
[4] R.Y. Wei, “Noncoherent block coded modulation,” in Proc. IEEE Wireless Communications and Networking Conference March 2003, pp. 763-767, March 2003.
[5] R.Y. Wei, “Noncoherent block coded MPSK,” IEEE Trans. Commun. (revised).
[6] D. Chase, “A class of algorithms for decoding block codes with channel measurement information,” IEEE Trans. Inform. Theory, vol. IT-18, pp. 170-182, Jan. 1972.
[7] L. Hanzo, T. H. Liew and B. L. Yeap, Turbo Coding, Turbo Equalisation and Space-Time Coding for Transmission over Fading Channels, UK: John Wiley & Sons, 2002.
[8] G. Aricò and J. H. Weber, “Limited-Trial Chase Decoding,” IEEE Trans. Inform. Theory, vol. 49, pp. 2972-2975, Nov. 2003
[9] J.G. Proakis, Digital Communications 2nd ed. New York: McGraw-Hill, 1989.
[10] D. Divsalar and M.K. Simon, “Multiple-symbol differential detection of MPSK,” IEEE Trans. Commun., vol. 38, pp. 300-308, 1990.
[11] K.M. Mackenthun, “A fast algorithm for multiple-symbol differential detection of MPSK,” IEEE Trans. Commun., vol. 42, pp. 1471-1474, Feb. 1994.
[12] S. Lin and D. J. Costello Jr., Error Control Coding: Fundamentals and Applications, NJ: Prentice Hall, 1983.
指導教授 魏瑞益(Ruey-Yi Wei) 審核日期 2004-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明