博碩士論文 91532020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:84 、訪客IP:3.230.154.129
姓名 周鍾烈(Chung-Lieh Chou)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基因演算法於語音聲紋解攪拌之應用
(Application of Genetic Algorithms in Descrambling Secured Voice Signals)
相關論文
★ 以Q-學習法為基礎之群體智慧演算法及其應用★ 發展遲緩兒童之復健系統研製
★ 從認知風格角度比較教師評量與同儕互評之差異:從英語寫作到遊戲製作★ 模糊類神經網路為架構之遙測影像分類器設計
★ 複合式群聚演算法★ 身心障礙者輔具之研製
★ 指紋分類器之研究★ 背光影像補償及色彩減量之研究
★ 類神經網路於營利事業所得稅選案之應用★ 一個新的線上學習系統及其於稅務選案上之應用
★ 人眼追蹤系統及其於人機介面之應用★ 結合群體智慧與自我組織映射圖的資料視覺化研究
★ 追瞳系統之研發於身障者之人機介面應用★ 以類免疫系統為基礎之線上學習類神經模糊系統及其應用
★ 虹膜辨識系統之研究與實作★ 可攜式手型辨識系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文中,將針對高頻無線通訊中的類比語音攪拌加密訊號以基因演算法從其聲紋所具有的特性,看成解方格拼圖的問題還原其原始訊號。實驗中所使用的語音訊號源取樣量化與攪拌模擬,乃至於各類數值與演算法運算,均在x86個人電腦上完成,使用的程式語言為C++,編譯器為Borland C++ Builder;在考量處理速度之下,我們採用8 bits的ADC並將二維的聲紋圖依攪拌使用的四個頻段接續轉為一維的問題處理,而被攪拌的聲紋單元邊界像素被用來做為解攪拌接圖的特徵元素;在一筆語音信號檔中,不含有能量的區間或含有較少能量的聲紋圖框無法完整以拼圖解攪拌還原是可以被理解的,我們對不同能量比例的聲紋圖框做了一系列的實驗統計,在能量佈滿整個聲紋圖框的解攪拌結果上,幾乎都呈現有九成以上的還原率。而且在基因演算法中疊代的世代次數並不用太高即可收斂完成,使用的時間在此NP-Complete的問題上相對並不會太久。從語音訊號的分析、攪拌的原理與模擬、基因演算法的模塑應用與實作結果統計,都在本論文中有詳細的論述。
摘要(英) In this paper, we will reconstruct an analog scramble-secured speech signal, which usually used in HF (High Frequency) radio transmission, using the feature of sonogram of it and treat it as solving a jigsaw puzzle by genetic algorithm (GA). In our experiment, including signal sampling, scrambling simulation, mathematical computing and algorithm applying were all accomplished at x86 PC platform, and with programming language of C++, compiler of Borland C++ Builder. An 8 bits ADC is used by reason of process speed. We also take 2-dimension sonogram as 1-dimension issue by connecting 4 frequency bands which used for scrambling. The boundary pixel of each scrambling element sonogram is used as main feature for descrambling, or reconstruction. In a speech signal source stream, it can be realized that if none of speech energy or small amount of energy located in a process frame is not possible to be fully reconstructed. We have done a series of experimental and statistical analysis according to different amount of energy in one frame. It shows that above 90% reconstruction rate if speech energy spread all over one processing frame. And it also shows that there are not many generations past after GA process to become a converge state. The speech signal analysis, analog scrambling method, scrambling/descrambling simulation and program implementation will all be illustrated in this paper in detail.
關鍵字(中) ★ 基因演算法
★ 拼圖
★ 聲紋格
★ 類比加密
關鍵字(英) ★ sonograph
★ genetic algorithm
★ jigsaw puzzle
論文目次 摘要..................................................................... I
Abstract................................................................. II
目錄..................................................................... III
圖目錄................................................................... V
表目錄................................................................... VII
第一章 緒論.............................................................. 1
1.1 背景................................................................. 1
1.2 動機................................................................. 1
1.3 論文結構............................................................. 2
第二章 聲紋分析與處理.................................................... 3
2.1類比加密參數.......................................................... 3
2.1.1頻域加密............................................................ 3
2.1.2時域加密............................................................ 4
2.1.3頻域及時域雙維度組合的攪拌方式...................................... 6
2.2濾波與移頻............................................................ 7
2.3攪拌模擬.............................................................. 9
第三章 聲紋方格模塑...................................................... 13
3.1聲紋方格組成.......................................................... 13
3.2基因演算法............................................................ 14
3.3族群模塑定義.......................................................... 16
3.4特徵萃取與適應函數定義................................................ 16
3.5 交配過程............................................................. 17
3.6 突變過程............................................................. 20
第四章 實作程式.......................................................... 21
4.1 語音訊號收集錄音..................................................... 21
4.2 聲紋分析與顯示工具................................................... 22
4.2.1 快速傅利葉轉換所使用的點數......................................... 23
4.2.2快速傅利葉轉換滑動窗的取樣點間隔.................................... 24
4.2.3 快速傅利葉轉換使用的窗形濾波方式................................... 26
4.3解攪拌程式............................................................ 26
4.3.1 重組聲紋正確率..................................................... 27
4.3.2 人耳聽覺的實際辨識率............................................... 32
4.3.3 基因演算法疊代次數的效果........................................... 35
4.4 圖片拼圖程式......................................................... 38
第五章 結論與展望........................................................ 41
第六章 參考文獻.......................................................... 42
參考文獻 [1] R. Bermardini, G.M. Cortelazzo and G.A. Mian, “A General Scrambling Rule for Multidimensional FFT Algorithms”, IEEE Transactions on Signal Processing vol. 42, no. 7, pp. 1786 – 1794, July 1994
[2] K. Brandt, K.R. Burger, J. Downing and S.K. Mathematics, “Using backtracking to solve the scramble squares puzzle” Computer Science, and Physics Rockhurst University
[3] M.G. Chung, M.M. Fleck and D.A. Forsyth, “Jigsaw puzzles solver using shape and color” Proc. 1998 Fourth International Conference on Signal Processing, vol. 2, 12-16, pp. 877 – 880, Oct. 1998
[4] M.S. Ehsani and S.E. Borujeni, “Fast Fourier Transform Speech Scrambler”, Proc. 2002 First International IEEE Symposium on Intelligent Systems vol. 1, 10-12, pp. 248 – 251, Sept. 2002
[5] E.V. Stansfield, D. Harmer and M.F. Kerrigan, “Speech processing techniques for HF radio security”, Proc. IEE on Communications, Speech and Vision, vol. 136, no. 1, pp. 25 – 46, Feb. 1989
[6] P.N. Suganthan, “Solving jigsaw puzzles using Hopfield neural networks”, International Joint Conference on Neural Networks, vol. 6, 10-16, pp. 3745 – 3749, July 1999
[7] F. Toyama, Y. Fujiki, K. Shoji and J. Miyamichi, “Assembly of Puzzles Using a Genetic Algorithm”, Proc. 16th International Conference on Pattern Recognition 2002, vol. 4, pp. 389 – 392, 2002
[8] H. Bergzen “TAudio 4.1”, http://www.delphi32.com/vcl/1871, 1999
指導教授 蘇木春(Mu-Chun Su) 審核日期 2005-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明