博碩士論文 91623009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.21.231.245
姓名 林逸凡(Yi-Fan Lin)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 雨滴粒徑分佈應用於Ka波段降雨衰減估計之研究
(Raindrop-size Distribution for the Prediction of Rain Attenuation in Ka Band)
相關論文
★ 2.4GHz無線傳輸系統於遙測與GPS數據整合之研製★ 2.4GHz之無線電波室內傳播通道特性量測與分析
★ K波段地面鏈路降雨衰減效應之研究★ 多層非均勻介質之微波散射模擬分析
★ Ka 波段地面鏈路降雨效應與植被遮蔽 效應之研究★ 地面遙測影像雷達發射與接收模組之設計
★ 合成孔徑雷達之移動目標物速度估測研究★ 小波轉換於合成孔徑雷達干涉相位雜訊之研究
★ Ka波段台灣地區降雨及地面環境傳播特性研究★ 全偏極合成孔徑雷達非監督式目標分類與極化方位角偏移效應估算之研究
★ 全偏極合成孔徑雷達於目標分類之研究★ 影像融合技術應用於地表分類之探討
★ 應用共軛梯度演算法在掃描式合成孔徑雷達目標物特徵增強處理★ 台灣北部地區Ka波段降雨衰減模式之研究
★ 雨滴粒徑與植被遮蔽效應對Ka波段電波衰減影響之探討★ 基因演繹法於全偏極合成孔徑雷達影像對比強化最佳化之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要:
隨著無線通訊鏈路使用日益頻繁,頻譜之擁擠,世界各國均傾向採用Ka (26~40GHz)波段,不過此波段在地表或大氣通道傳播時,容易受到自然環境影響,其中又以降雨造成的信號衰減情況,對通訊系統的品質影響最為嚴重,而預估降雨所造成的信號衰減將為重要的課題。
降雨衰減估計,即考慮電波在大氣通道中傳播時,雨滴粒子對電波能量所造成的吸收及散射之程度,因此雨滴-即雨滴粒徑分佈便成為估計降雨衰減之重要指標。雨滴粒徑分佈對應於降雨量之研究在多年前即被提出,Exponential、Gamma、Weibull、Lognormal分佈都曾被用來做為雨滴粒徑分佈模型的依據;主要是建立適用的雨滴粒徑分佈模型,才能方便準確的使用在雨衰估計的理論中。本研究分析中壢地區之雨滴粒徑分類統計,結果發現中壢之雨滴粒徑分佈為Gamma分佈;接著我們利用2002年及2003年,共二年的中壢地區雨滴譜儀量測資料,擬合(Fitting)降雨量及雨滴粒徑分佈係數μ、σ、N0的關係,並成功的擬合出本地Gamma雨滴粒徑分佈模型,其分佈模型參數分別為:μ=0.67364‧R0.19476;σ=0.23637‧R0.29347;N0=829.63‧R0.30689;再將此模型代入雨衰估計理論-我們假設雨滴為球形,利用邁氏散射(Mie Scattering)來計算雨滴粒子的消散係數(Extinction Cross Section),它是一個和電波頻率,雨滴粒徑大小有關的係數,利用此法便可以得到降雨量對應於降雨衰減之關係,以達雨衰估計之目的。
  在降雨衰減估計的研究中,Crane. R. K.提供了降雨衰減模型(1978),而國際電信聯盟也提供雨衰模型(ITU-R P838 1992) ,本文最後,分別以本實驗室之Ka波段地面鏈路量測系統之降雨衰減實驗量測資料、Crane 雨衰模型、ITU-R P838 雨衰模型及利用本地Gamma雨滴粒徑分佈模型計算降雨衰減結果做比較分析,分別分析在年際性及季節性不同下,其雨滴粒徑分佈對應於降雨衰減之影響;比較結果可証明本地Gamma雨滴粒徑分佈模型所估算的降雨衰減值較為正確,而Crane 雨衰模型則有明顯高估、ITU-R P838 雨衰模型則有明顯低估的現象。
摘要(英) Abstract:
The rapid growth in demand for additional communication capacity has put pressure on engineers to develop microwave systems operating at higher frequencies. Many people tend to choice the Ka-band (26-40 GHz) for the applications. It turns out, however, that frequencies above 10 GHz attenuation caused by atmospheric particles can reduce the reliability and performance of radar and space communication links. Such particles include oxygen, ice crystals, rain ,fog, and snow. Prediction of the effect of these precipitates on the performance of a system becomes important. In this study, we will discussed the prediction of attenuation of an EM wave propagating through rain drops.
The prediction of attenuation due to rain is considered the EM wave propagating through rain drops, the energy of the EMW will be absorbed and scattered by rain drops, then the raindrop-size distribution (DSD) is the most part in the prediction of attenuation due to rain. Many raindrop-size distribution have been reported. Exponential、Gamma 、Weibull、Lognormal distribution have been use to be the raindrop-size model. Because use the suitable raindrop-size distribution model, we can calculate the rain attenuation more accurately. In this study, we analysis the raindrop-size distribution in Chung-li, then we find the raindrop-size distribution in Chung-li follow the Gamma distribution; then a Gamma raindrop-size distribution is proposed by fitting the measurements of rainfall observed using a distrometer in Chung-li, the three parameter of raindrop-size is μ=0.67364‧R0.19476;σ=0.23637‧R0.29347;N0=829.63‧R0.30689. Then we use Gamma raindrop-size distribution model to predict the rain attenuation due to rain. We will assume that rain drops are spherical and the scattering mechiasm follows the Mie scattering theory .
In the passing research of rain attenuation prediction, Crane. R. K. proposed the “Global (Crane) Attenuation Model (1978)”and ITU proposed the “ITU-R P838”rain attenuation prediction methods, finally, we comparison of the rain attenuation measurements result using our “Ka band (28GHz) terrestrial link propagation system” and the prediction result from Chung-li raindrop-size distribution model and and Crane Global (Crane) Attenuation Model and ITU-R 838 rain attenuation prediction methods, then we find the prediction from our raindrop-size distribution have very good prediction, but Crane model have higher prediction and ITU-R model have lower prediction.
關鍵字(中) ★ 雨滴粒徑分佈
★ 降雨衰減
★ Ka波段
關鍵字(英) ★ raindrop size distribution
★ rain attenuation
★ Ka band
論文目次 目 錄
摘要:…………………………………………………………………………………i
圖片目錄:…………………………………………………………………………viii
表格目錄:…………………………………………………………………………xiii
第一章 緒論………………………………………………………………………1
1.1 研究目的……………………………………………………………1
1.2 文獻回顧……………………………………………………………3
1.3 章節介紹……………………………………………………………7
第二章 實驗量測系統設置介紹…………………………………………………9
2.1 光學式雨滴譜儀介紹………………………………………………9
2.1.1 光學式感應單元……………………………………………12
2.1.2 室外電子單元………………………………………………13
2.1.3 室內使用者介面……………………………………………15
2.2 Ka波段地面鏈路量測系統介紹……………………………………16
2.2.1 信號發射端…………………………………………………17
2.2.2 信號接收端…………………………………………………21
2.2.3 光學式雨量計………………………………………………27
2.2.4 資料儲存及控制軟體………………………………………27
第三章 雨滴粒徑分佈之擬合及分析……………………………………………27
3.1 擬合目的及方法介紹………………………………………………27
3.2 雨滴譜儀觀測資料處理……………………………………………31
3.3 雨滴粒徑分佈觀測分類統計測試…………………………………35
3.4 雨滴粒徑分佈之擬合………………………………………………46
第四章 降雨衰減模型及實驗量測比較分析……………………………………55
4.1 利用雨滴粒徑分佈模型估算降雨衰減……………………………57
4.2 Crane 雨衰模型……………………………………………………60
4.3 國際電信聯盟(ITU-R) 雨衰模型…………………………………61
4.4 降雨衰減量測實驗…………………………………………………63
4.4.1 實驗使用設備………………………………………………63
4.4.2 量測系統參數………………………………………………63
4.4.3 實驗設備架設位置…………………………………………64
4.4.4 實驗方法……………………………………………………65
4.4.5 實驗量測資料分析…………………………………………65
4.5 雨衰估計模型及實驗結果比較分析………………………………70
4.5.1 雨滴粒徑分佈對於降雨衰減年際性分析…………………71
4.5.2 雨滴粒徑分佈對於降雨衰減季節性分析…………………73
第五章 結論及未來展望…………………………………………………………77
5.1 結論…………………………………………………………………77
5.2 未來展望……………………………………………………………79
REFERENCE……………………………………………………………………………80
參考文獻 [1] Sadiku, N. O., “Numerical Techniques in Electromagnetics,”
CRC, 1992.
[2] Laws, J. O., and Pasons, D .A., “The Relation of Raindrop-size to Intensity,” Trans. Am. Geophys. Union, 1943, 24, pp. 452-460
[3] Marshall, J. S., and Palmer, W. M. K., “The Distribution of Raindrops with Size,” J. Meteorol., 1948, 5,pp. 165-166
[4] Joss, J., Thams, J. C., and Waldvogel, A.,“The Variation of Raindrop-size Distribution at Locarno,”Proceedings of international conference on Cloud physics, 1967, pp. 369-373
[5] Atlas, D., and C. W. Ulbrich., “ The Physical Basis for Attenuation-Rainfall Relationships and the Measurement of Rainfall Parameters by Combined Attenuation and Radar Methods,” J. Rech. Atmos. , No. 8, pp. 275-298, 1974
[6] Jiang, H., M.Sano, M. Sekine,“Weibull Raindrop-size Distribution and Its Application to Rain Attenuation,” IEE Proc.-Microw. Antennas Propag. Vol. 144, No. 3, pp. 197-200. June 1997
[7] Timothy, K. I., J. T. Ong, and E. B. L. Choo,“Raindrop Size Distribution Using Method of Moments for Terrestrial and Satellite Communication Applications in Singapore,”IEEE Trans. Antenna and Propagation, Vol. 50, No. 10, pp. 1420-1424, 2002
[8] Bussey, H. E., “Microwave Attenuation Statistics Estimated from Rainfall and Water Vapor Statistics,” Proc. IRE, pp. 781-185, 1950
[9] Crane, R. K., “Electromagnetic Wave Propagation Through Rain,”
Wiley, 1996.
[10] ITU-R Rec. 838, International Telecommuication Union.
[11] Maitra, A., C. J. Gibbins., “Modeling of Riandrop Size Distributions from Multiwavelength Rain Attenuation Measurements,” Radio Sci., Vol. 34, No. 3, pp. 657-666, 1999
[12] Lin, D. P. and H. Y. Chen., “An Empirical Formula for the Prediction of Rain Attenuation in Frequency Range 0.6-100 GHz,” IEEE Trans. Antenna and Propagation, Vol. 50, No. 4, pp. 545-551, April 2002
[13] Timothy, K. I. and S. K. Sarkar., “ Generalised Mathmatical Model for Raindrop Size Distribution (RSD) for Application in Radiowave Propagation and Meteorological Studies,” Electro. Lett., Vol. 33, No. 10, pp. 895-897, 1997
[14] Maritra, A, “ Three-Parameter Raindrop Size Distribution Modeling at a Tropical Location,” Electro. Lett., Vol. 36, No. 10, pp. 906-907, 2000
[15] Yeo, T. S., P. S. Kooi., M. S. Leong and L. W. Li., “ Tropical Raindrop Size Distribution for the Prediction of Rain Attenuation of Microwaves in the 10-40 GHz Band,” IEEE Trans. Antenna and Propagation, Vol. 49, No. 1, pp. 80-83, January 2001
[16] Olsen et al., “The Relation in the Calculation of Rain
Attenuation,” IEEE Trans. Antenna and Propagation, Vol. AP-26, No. 2 March 1987
[17] Simon R. Saunders., “ Antennas and Propagation for Wireless Communication Systems,”Wiley, 1999
[18] 謝光龍, “ Ka波段地面鏈路降雨效應與植被遮蔽效應之研究,” 國立中央大學太空科學研究所碩士論文, 2002.
[19] 鞠志遠, “Ka波段台灣地區降雨及地面環境傳播特性研究,” 國立中央大學太空科學研究所博士論文, 2003.
指導教授 陳錕山(Kun-Shan Chen) 審核日期 2004-6-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明