博碩士論文 91642001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:18.118.45.162
姓名 李顯宗(Hsien-Tsung Lee)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 有機材料生油潛能評估與烴類成熟度參數相關性研究
(The study for correlation between evaluation of organic-matter petroleum potential and hydrocarbon maturity parameters)
相關論文
★ 抑制鏡煤素反射率之量測成因-以分離台灣裕峰煤為例★ 有機質成熟度之染色技術應用
★ 臺灣中新世石底層煤中硫及微量元素含量之沉積涵義★ 煤素質組成對熱裂分析之影響
★ 大屯火山群地熱氣與溫泉水之地化特性★ 灰關聯分析於水庫水質綜合評判之研究 —以翡翠及石門水庫為例
★ 土石流誘發因子萃取對土石流危險溪流判定之影響★ 石油系統之有機材料與熱成熟度特性探討
★ 石油系統有機材料特性及熱成熟度與油氣潛能之關係探討:以澳洲西北海域為例★ 車籠埔斷層深鑽岩心鏡煤素反射率研究
★ 從岩石風化速率探討南橫山崩 -以敏督莉颱風為例★ 廢棄礦場環境影響綜合評估
★ 河流縱剖面與構造地形指標之量化分析: 以濁水溪為例★ 九份-金瓜石地區火成作用對有機物成熟度之影響
★ 不同成熟度之有機成分探討★ 石門水庫上游集水區水質與復興鄉人文環境之綜合研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究乃從應用有機地球化學的角度,探討有機材料特性及熱成熟度與油氣潛能的關係,研究方法以煤素質成分分析、元素分析、鏡煤素反射率量測、Rock-Eval 熱裂分析、與多變量統計分析等建構確實有效之生油潛能評估參數。有機材料生烴潛能與油母質的類型、沉積環境及成熟度密切相關,其可能涉及的參數與有機質豐度有關的如TOC、S1、S2 等,與品質有關的如Atomic H/C、HI、BI、QI等,及與成熟度有關的如Ro%、Tmax、PI 等。這些參數彼此間必存在著某些相關性,可以數學及統計分析的方法進行更深入探討。
結果顯示 (1)Ro自0.60%上升至1.00%,或Tmax 430oC至450 oC呈現漸增之生油潛能(HI值);Ro超越1.0%或Tmax超越450 oC時,HI值漸減;至Ro~2.00%或Tmax~510 oC時至無生油潛能。(2)依HI與Ro關係圖可將生油潛能劃分四區,以Ro 0.75%至1.05%,Tmax 440 oC-455 oC及Ro 1.25%~1.95%,Tmax 465 oC-500 oC為生油區與生氣區;(3)HI、QI值與Ro%之線性迴歸顯示成熟度超越Ro 1.00%後,生烴潛能迅速下降。
隨著熱成熟度指標鏡煤素反射率(Ro%)值增大,HI、S1、S2、H/C值將減小。H/C原子比值在Ro%=0.55~0.85 (H/C=1.1~0.7)時下降有趨緩情形。以H/C原子比值對下列各項參數HI、S1、S2、S1+S2、S1/(S1+S2)、S1/TOC、(S1+S2)/TOC、Tmax與TOC等作圖後,顯示當H/C原子比值在0.7~1.1的範圍時,各項參數值在該氫碳原子比值範圍內呈現大範圍的變化。整體而言,當H/C原子比值增加時,氫指數HI値有升高的趨勢,因此氫指數HI與H/C原子比值也呈現一定的相關性。再以(S1+S2)/TOC値作為主要指標,對不同有機材料的生油潛能進行評估發現本研究之有機材料單位有機碳生油潛量(S1+S2/TOC)値約在100~380間,與一般產氣、產油及優質生油型腐殖煤相當。此外對本研究所有樣品而言,當反射率(Ro%)值在0.55以下時,其HI值呈現不規律的大幅度變化(Ro%=0.55~0.35→HI=80~520mg/g);而Atomic H/C值在0.7~1.1時,其HI值則呈現穩定漸增的變化(Atomic H/C=0.7~1.1→ HI = 120~520 mg/g),由此可知,有機材料在開始進入油窗Ro%=0.55、Atomic H/C=1.1時,具有一定的成熟度與生油潛能。
摘要(英) This research discussed the relationship of organic material characteristics and thermal maturity versus hydrocarbon potential from the viewpoint of applied organic geochemistry. The purpose is to establish the reliable indices of synthetic assessment of organic matter in the evaluation of petroleum potential. Therefore, the scope is focused on maceral composition analysis, vitrinite reflectance measurement, Rock-Eval pyrolysis, elements analysis, and multivariate statistical analysis. In addition, it is to present new guidelines for improved assessment of the kerogen type, generative potential and thermal maturity using Rock-Eval parameters.
The analytic results indicate that petroleum generation potential is completely exhausted at a vitrinite reflectance of 2.00-2.20% or a Tmax of 510-520°C. A decline in BI signifies the start of the oil expulsion window and occurs within the vitrinite reflectance range 0.75-1.05% or a Tmax of 440-455 oC. The petroleum potential can be divided into four different parts based on the cross-plot of HI vs. %Ro. The area with the highest petroleum potential is located in section B with %Ro=0.60-1.00%, and HI>100. The start of the oil expulsion window occurs within the %Ro range of ~ 0.75–1.05%Ro or the Tmax range ~ 440-455°C and the total oil window extends to %Ro = ~ 1.25-1.95 or Tmax = ~ 465-525°C.
The H/C ratio, as well as the HI, S1, and S2, generally decreases with the maturity increasing. The H/C ratio decreases slightly from 1.1 to 0.7 with the maturity increasing from Ro 0.55% to 0.85%. Samples with H/C ratio in this range show significant change in certain other geochemical parameters (eg. HI, S1, S2, S1+S2, S1/(S1+S2), S1/TOC, (S1+S2)/TOC, Tmax). The (S1+S2)/TOC ratio (defined as QI) was used as an indicator of the hydrocarbon potential. The QI, HI and H/C ratio show a certain correlation, all increasing accordingly. The QI of the samples analyzed in this study is approximately 100 to 380 (mgHC/gTOC), similar to that of most humic coals for oil and gas generation. Samples with Ro value lower than 0.55% always show significant variation in their HI, ranging from 80mgHC/gTOC to 520mgHC/gTOC. It is inferred that hydrocarbon potential started from Ro 0.55% and atomic H/C ratio 1.1 in this study.
關鍵字(中) ★ 油母質
★ 生油潛能
★ 氫指數
★ 鏡煤素反射率
★ H/C原子比
★ 熱裂分析
關鍵字(英) ★ atomic H/C ratio
★ hydrogen index
★ pyrolysis
★ hydrocarbon potential
★ kerogen
★ vitrinite reflectance (Ro%)
論文目次 Chinese Abstract i
English Abstract ii
Acknowledgement iii
Contents iv
List of Tables vii
List of Figures ix
Explanation of symbols xii
Chapter 1 Introduction 1
Chapter 2 Literature review 5
Chapter 3 Research objective 12
Chapter 4 Methods of experiment and analysis 14
4.1 Statistical Analysis for Assessed Parameters of Petroleum Potential 14
4.1.1 Methods 14
4.1.2 Analytic procedure of experiments 16
4.1.3 Statistical analysis 16
4.2 Relationships among geochemical Indices of organic materials 18
4.2.1 Methods 18
4.2.2 Sampling 19
4.3 Atomic H/C ratio of organic matter as an evaluation parameter 20
4.4 Relationships between organic material and thermal maturity 22
Chapter 5 Results and Discussions 36
5.1 Statistical analysis 36
5.2 The evolution of HI with increasing thermal maturity 38
5.3 The evolution of QI with increasing thermal maturity 40
5.4 The evolution of BI with increasing thermal maturity 41
5.5 Petrographic and geochemical analysis of petroleum potential 43
5.6 Atomic H/C ratios vs. various parameters 46
5.7 Hydrocarbon potential assessment of organic materials 47
5.8 Maceral analysis and elemental analysis 49
5.9 Vitrinite reflectance (Ro%) versus Tmax 51
5.10 Characteristics of organic matter and thermal maturity in a local system 52
Chapter 6 Synthesizing Discussions 112
Chapter 7 Conclusions 115
References 119
Appendices 131
A The nonparametric tests (2 and K independent samples) 131
B Pearson’s correlation analysis for data-set of 553 and 451 samples 132
C The principal component analysis for10 parameters of 553 samples 133
D The Pearson’s correlation analysis for 206 and 38 samples 134
E Histograms of HI vs. %Ro and Tmax (oC) 135
參考文獻 Akande, S. O., Ojo, O. J., Erdtmann, B. D., and Hetenyi, M., 1998. Paleoenvironments, source rock potential and thermal maturity of the Upper Benue rift basins, Nigeria : implications for hydrocarbon exploration. Organic Geochemistry, vol. 29, no. 1-3, 531-542.
Akinlua, A., Ajay, T.R., Jarvie, D.M. and Adeleke, B.B., 2005. A re-appraisal of the application of Rock-Eval pyrolysis to source rock studies in the Niger Delta. Journal of Petroleum Geology, 28(1), 39-48.
Amijaya, H., and Littke, R., 2006. Properties of thermally metamorphosed coal from Tanjung Enim Area, South Sumatra Basin, Indonesia with special reference to the coalification path of macerals. International Journal of Coal Geology, 66, 271-295.
Arfaoui, A., Montacer, M., Kamoun, F., and Rigane, A., 2007. Comparative study between Rock-Eval pyrolysis and biomarkers parameters: A case study of Ypresian source rocks in central-northern Tunisia. Marine and Petroleum Geology, 24, 566-578.
ASTM, 1975. Standard D-2797, ASTM Standard manual, Part 26, 350-354.
ASTM, 1980. Standard D-2797, Microscopical determination of volume percent of physical components in a polished specimen of coal, ASTM. Philadelphia, Pa.
Banerjee, A., Sinha, A. K., Jain, A. K., Thomas, N. J., Misra, K. N., and Chandra, K., 1998. A mathematical representation of Rock-Eval hydrogen index vs. Tmax profiles. Organic Geochemistry, vol. 28, no.1/2, 43-55.
Bates, R. L., Jackson, J. A., 1987. Glossary of geology. American Geological Institute, Alexandria, Virginia, 565 pp.
Bostick, N. H., 1971. Thermal alteration of clastic organic particles as a indicator of contact and burical metamorphism in sedimentary rocks: Geoscience and Man., 3, 83-93.
Bostick, N.H., 1974. Phytoclasts as Indicator of thermal metamorphism, Franciscan Assemblage and Great Vally Sequence (upper Mosozoic): California. Spec. Pap. Geol. Soc. Amer., 153, 1-17.
Bustin, R. M., 1991. Quantifying macerals : some statistical and practical considerations: International Journal of Coal Geology, 17, 213-238.
Canonico, U.,Tocco, R., Ruggiero, A., and Suarez, H., 2004. Organic geochemistry and petrology of coals and carbonaceous shales from western Venezuela. International Journal of Coal Geology, 57, 151-165.
Chen, J., Liang, D., Wang, X., Zhong, N., Song, F., Deng, C., Shi, X., Jin, T., and Xiang, S., 2003. Mixed oils derived from multiple source rocks in the Cainan oilfield, Junggar Basin, Northwest China. PartⅠ: genetic potential of source rocks, features of biomarkers and oil sources of typical crude oil. Organic Geochemistry, 34, 889-909.
Chen, J.-P., Deng, C.-P., Wang, H.-T., and Han, D.-X., 2006. Genetic potential and geochemical features of pyrolysis oils of macerals from Jurassic coal measures, Northwest China. Geochimica, no. 1, 81-87.
Chi, W.R., W.H. Wang, D.L. Lu, L.H. Lin, and R.C. Wu, 1987. the application of back-stripping method in basin analysis and oil exploration of the Peikang area: Bull. Explor. & Prod. Res., Chinese Petroleum Corp., 10, 63-88.
Chiu, H.T., 1972. Miocene stratigraphy of the Nantou area, central Taiwan: Petro. Geol. Taiwan, 10, 159-177.
Chiu, H.T., 1975. Miocene stratigraphy and its relation to the Paleogene rocks in western-central Taiwan: Petro. Geol. Taiwan 12, 51-80.
Chiu, J.-H., Kuo, C.-L., Lin, H.-J., Chou, T.-H., 1993. Geochemical modeling of source rock hydrocarbon generation potential. Exploration Development Research Report, vol. 16, 232-256.
Chiu, J.-H., Kuo, C.-L., Wu, S.-H., Lin, L.-H., Shen, J.-C., and Chou, T.-H., 1996. Simulation of the hydrocarbon generation potential of the coal samples. Exploration Development Research Report, vol. 19, 420-453.
Cooles, G. P., Mackenzie, A. S., Quigley, J. M., 1986. Calculation of petroleum masses generated and expelled from source rocks. Organic Geochemistry, 10, 235-245.
Curry, A. M., Ballantyne, C. K., 1999. Paraglacial modification of glacigenic sediment. Geografiska Annaler. Series A, Physical Geography, 81(3), 409-419.
Dahl, B., Bojesen-Koefoed, J., Holm, A., Justwan, H., Rasmussen, E., Thomsen, E., 2004. A new approach to interpreting Rock-Eval S2 and TOC data for kerogen quality assessment. Organic Geochemistry, 35, 1461-1477.
Dormans, H. N. M., Huntjens, F.J. and van Krevelen, D.W., 1957. Chemical structure and properties of coal-composition of the individual macerals (vitrinites, fusinite, micrinites and exinites). Fuel, 36, 321-339.
Dow, W.G., 1974. Application of Oil correlation source rock data to exploration in Williston basin. Amer. Asso. Petro. Geol. Bull., 58, # 7, 1253-1262.
Espitalie, J., Deroo, G., Marquis, F., 1985. La pyrolyse Rock-Eval et ses applications. Revue Institut Franc- ais du Pe’ trole, Part I, vol. 40, pp. 563–578; Part II, vol. 40, pp. 755–784.
Espitalie, J., La Porte, J.L., Madec, M., Marquis, F., Le Plat, P., Paulet, J., and Boutefeu, A., 1977. Methode rapide de caracterisation des roches meres de leur potential petrolier et de leur degre d’evolution: Revue l’Inst. Francais du Petrole, 32(1), 23–42.
Ge, T.-S., Chen, Y.-X., Yu, T.-X., Wang, G.-S., Niu, Z.-R., Shen, S.-W., Li, Y.-L., Song, S.-Y., Wu, T.-S., Zhao, Q.-B. and Xiong, C.-Y., 1993. Liaohe Oil Field, Petroleum geology of China, 3: 474-494.
Hsiao, P.T., C.C. Hu, K.A. Lin, S.H. Hsu, S.C. Fuh, T.Y. Chang, T.H. Hsiuan, H.C. Sheen, C.L. Kuo, and C.J. Lee, 1991. Hydrocarbon potential evaluation of the Penghu Basin: Petro. Geol. Taiwan, 26, 215-229.
Hu, C.-J., 2001. The application of Rock-Eval 6 in geochemical exploration. Exploration Development Research Report, vol. 23, 367-378.
Huang, C.Y., 1984. Late Oligocene benthic foraminifera assemblages in northern Taiwan: Pau, France, Benthos’83, 2nd Intern.l Symp. Benthic Foraminifera, 6, 317-323.
Huang, C.Y., 1986. Oligocene and Miocene stratigraphy of the Kuohsing area, central Taiwan: Acta Geol. Taiwanica 24, 281-318.
Huc, A.Y., Durand, B., Roucachet, J., Vandenbrouke, M., Pittion, J.L., 1986. Comparison of three series of organic matter of continental origin. Org. Geochem. 10, 65–72.
Hunt, J.M., 1996. Petroleum geochemistry and geology (2nd ed.): W. T. Freeman and Company, New York, 743pp.
Hwang, W.T. and C.Y. Wang, 1993. Sequential thrusting model for mountain building —constrains from geology and heat flow of Taiwan. Journ. Geoph. Res., 98, 9963-9973.
ISO 7404-5, 1994(E). Methods for the petrographic analysis of bituminous coal and anthracite: Part 5. Method of determining microscopically the reflectance of vitrinite. International Standard, 2nd ed., pp. 1-13.
Karakitsios, V. and Rigakis, N., 2007. Evolution and petroleum potential of Western Greece. Journal of Petroleum Geology, 30(3), 197-218.
Katz, B. J., 1983. Limitation of ‘Rock-Eval’ pyrolysis for typing organic matter. Organic Geochemistry, 4, 195-199.
Keller, G., 2001. Applied statistics with Microsoft Excel. Thomson Learning Asia Pte Ltd, Beijing, 670pp.
Killops, S. D., Funnell, R. H., Suggate, R. P., Sykes, R., Peters, K. E., Walters, C., Woolhouse, A. D., Weston, R. J., Boudou, J.-P., 1998. Predicting generation and expulsion of paraffinic oil from vitrinite-rich coals. Org. Geochem. 29(1-3), 1-21.
Kotarba, M. and Lewan, M. D., 2004. Characterizing thermogenic coalbed gas from Polish coals of different ranks by hydrous pyrolysis: Organic Geochemistry, 35, 615-646.
Kotarba, M. J., Clayton, J. L., Rice, D. D. and Wagner, M., 2002. Assessment of hydrocarbon source rock potential of Polish bituminous coals and carbonaceous shales: Chemical Geology, 184, 11-35.
Kotarba, M. J., Clayton, J. L., Rice, D. D., and Wagner, M., 2002. Assessment of hydrocarbon source rock potential of Polish bituminous coals and carbonaceous shales. Chemical Geology, 184, 11-35.
Kotarba, M. J., Wiectaw, D., Koltun, Y. V., Marynowski, L., Kusmierek, J., and Dudok, I. V., 2007. Organic geochemistry study and genetic correlation of natural gas, oil and Menilite source rocks in the area between San and Stryi rivers (Polish and Ukrainian Carpathians). Organic Geochemistry, vol.38, issue 8, 1431-1456.
Kotarba, M., and Lewan, M. D., 2004. Characterizing thermogenic coalbed gas from Polish coals of different ranks by hydrous pyrolysis. Organic Geochemistry, 35, 615-646.
Lewan, M. D., 1997. Experiments on the role of water in petroleum formation. Geochim. Cosmochim. Acta, 61, 3691–3723.
Lin, C.H., 2000. Thermal modeling of continental subduction and exhumation constrained by heat flow and seismicity in Taiwan. Tectonophysics, 324, #3, 189-201.
Liou, C. H., and Hsu, C. Y., 1988. Petroleum exploration on the southwestern plain of Taiwan. Petro. Geol. Taiwan, 24, 18-36.
Liu, D.-H., Zhang, H.-Z., Dai, J.-X., Sheng, G.-Y., Xiao, X.-M., Sun, Y.-H., and Shen, J.-G., 2000. The research and evaluation of forming hydrocarbon from micro-constituent of coal rock. Chinese Science Bulletin, 45(4), 346-352.
Magoon, L.B., and W.G. Dow, eds., 1994. The petroleum system—from source to trap. Amer. Asso. Petro. Geol. Mem. 60, Tulsa, Oklahoma, U.S.A, 655pp.
Mao, E.-W., Zhou, J.-N., Wang, J.-G. and Zhang, S.-J., 1988. Depositional environment of the Nanchuang Formation in the Miaoli and Hsinchu area, Taiwan. Petroleum Geology of Taiwan, 24, 37-50.
Newman, J., Boreham, C.J., Ward, S.D., Murray, A.P., Bal, A.A., 1999. Floral influences on the petroleum source potential of New Zealand coals. In: Masterlerz, M., Glikson,M., Golding, S.D. (Eds.), Coalbed Methane: Scientific, Environmental and Economic Evaluation, Kluwer Academic, 461–492 pp.
Norgate, C. M., Boreham, C. J., Wilkins, A. J., 1999. Changes in hydrocarbon maturity indices with coal rank and type, Buller Coalfield, New Zealand. Organic Geochemistry, 30, 985-1010.
Otis, R.M., and Schneidermann, N., 1997. A process for evaluating exploration prospects. Amer. Assoc. Petro. Geol. Bull., 81, #7, 1087-1109.
Pedersen, G. K., Andersen, L. A., Lundsteen, E. B., Petersen, H. I., Bojesen-Koefoed, J. A., and Nytoft, H. P., 2006. Depositional environments, organic maturity and petroleum potential of the Cretaceous Coal-Bearing Atane Formation at Qullissat, Nuussuaq Basin, West Greenland. Journal of Petroleum Geology, vol. 29(1), p.3-26.
Pepper, A.S. and Corvi, P.J., 1995. Simple kinetic models of petroleum formation. Part I: oil and gas generation from kerogen. Marine Petroleum Geology, 12 (3), 291–319.
Peters, K.E. and Cassa, M.R., 1994. The Petroleum System—From Source to Trap, applied source-rock geochemistry, in: Magoon, L.B., Dow, W.G. (Eds.): American Association of Petroleum Geologists Memoir 60, 93–120.
Peters, K.E., 1986. Guidelines for evaluating petroleum source rocks using programmed pyrolysis. American Association of Petroleum Geologists Bulletin 70, 318–329.
Petersen, H. I., Rosenberg, Per, and Andsbjerg, Jan, 1996. Organic geochemistry in relation to the depositional environments of Middle Jurassic coal seams, Danish Central Graben, and implications for hydrocarbon generative potential. AAPG Bulletin, vol.80, no.1, 47-62.
Petersen, H. I., Rosenberg, P., 2000. The relationship between the composition and rank of humic coals and their activation energy distributions for the generation of bulk petroleum. Pet. Geosci., 6, 137-149.
Petersen, H. I., 2002. A reconsideration of the “oil window” for humic coal and kerogen type Ⅲ source rocks. Journal of Petroleum Geology, vol. 25(4), 407-432.
Petersen, H. I., Nytoft, H. P., Nielsen, L. H., 2004. Characterisation of oil and potential source rocks in the northeastern Song Hong Basin, Vietnam: indications of a lacustrine-coal sourced petroleum system. Organic Geochemistry, 35, 493-515.
Petersen, H. I., Tru, Vu, Nielsen, L. H., Duc, N. A., and Nytoft, H. P., 2005. Source rock properties of lacustrine mudstones and coals (Oligocene Dong Ho Formation), onshore Song Hong Basin, northern Vietnan. Journal of Petroleum Geology, vol. 28(1), 19-38.
Petersen, H. I., 2006. The petroleum generation potential and effective oil window of humic coals related to coal composition and age. International Journal of Coal Geology, 67, 221-248.
Powell, T. G., Boreham, C. J., Smyth, M., Russell, N., and Cook, A. C., 1991. Petroleum source rock assessment in non-marine sequences : pyrolysis and petrographic analysis of Australian coals and carbonaceous shales. Organic Geochemistry, vol. 17, no. 3, 375-394.
Rabbani, A. R. and Kamali, M. R., 2005. Source rock evaluation and petroleum geochemistry, offshore SW Iran. Journal of Petroleum Geology, vol.28(4), 413-428.
Sachsenhofer, R. F., Privalov, V. A., Izart, A., Elie, M., Kortensky, J., Panova, E. A., Sotirov, A., and Zhykalyak, M. V., 2003. Petrography and geochemistry of Carboniferous coal seamsin the Donets Basin (Ukraine): implications for paleoecology. International Journal of Coal Geology, 55, 225-259.
Stach, E., Mackowsky, M-Th., Teichmüller, M., Taylor, G. H., Chandra, D. and Teichmüller, R., 1982. Stach’s Textbook of coal petrology (3rd ed.). Berlin Stuttgar, Gebruder Borntraeger, 535pp.
Su, P.-J., 2001. The influence of maceral composition on Rock-Eval Pyrolysis: Masters Dissertation, Graduate Institute of Applied Geology at National Central University, 73pp.
Suggate, R.P. and Boudou, J.P., 1993. Coal rank and type variation in Rock-Eval assessment of New Zealand coals. J. Pet. Geol., 16, 73–88.
Sun, L.-C., Lee, H.-T., Lsai, L. L., 2007. A study of the pyrolysis parameter Tmax and vitrinite reflectance from mixed coal samples. Petroleum Geology & Experiment, 29(3), 298-300 (306).
Sun, L.-Z., 2000. Measurement of vitrinite reflectance suppression- coal sample separation from Yufeng, Taiwan as an example: Ph.D. Dissertation of Institute of Geophysics at National Central University, 81 pp.
Sun, S.C., 1982. The Tertiary basin of offshore Taiwan: Proceedings. 2nd ASCOPE Conference and Exhibition, 125-135.
Sun, S.C., 1985. The Cenozoic tectonic evolution of offshore Taiwan: Energy, 10, #3-4, 421-432.
Sun, X.-G., Qin, S.-F., Luo, J., and Jin, K.-L., 2001. A study of activation energy of coal macerals. Geochimica, vol. 30, no. 6, 559-604.
Sykes, R., 2001. Depositional and rank controls on the petroleum potential of coaly source rocks. In: Hill, K.C., Bernecker, T. (Eds.), Eastern Australasian Basins Symposium, a Refocused Energy Perspective for the Future. Petrol. Expl. Soc. Austral., Spec. Publ., 591–601.
Sykes, R., and Snowdon, L.R., 2002. Guidelines for assessing the petroleum potential of coaly source rocks using Rock-Eval pyrolysis. Org. Geochem., 33, 1441–1455.
Taylor, A.W. and Ritts, B.D., 2004. Mesoscale heterogeneity of fluval-lacustrine reservoir analogues: examples from the Eocene Green River and Colton Formations, Uinta Basin, Utah, U.S.A.: Journal of Petroleum Geology, 27, 3-26.
Taylor, G.H., Teichmüller, M., Davis, A., Diessel, C.F.K., Littke, R., Robert, P., 1998. Organic Petrology. Gebrüder Borntraeger, Berlin, Stuttgart. 704 pp.
Teichmüller, M., Durand, B., 1983. Fluorescence microscopical rank studies on liptinites and vitrinites in peat and coals, and comparison with results of the Rock-Eval pyrolysis. Int. J. Coal Geol., 2, 197–230.
Ting, F.T.C., 1978. Petrographic techniques in coal analysis, in: Karr, C., Jr. (ed.):Analytical Methods for Coal and Coal Products: Academic Press, Inc., New York, 3-26.
Tissot, B. P. and Welte, D. H., 1984. Petroleum formation and occurrence ; a New approach to oil gas exploration. Springer-Verlag, Berlin, Heidelberg, New York, 699pp.
Tissot, B.P., Pelet, R., Ungerer, P., 1987. Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation. AAPG Bull., 71, 1445–1466.
Tsai, L. L., Hsieh, J., Sun, L.- C., and Lee, H.-T., 2004. A hydrocarbon potential study of local petroleum system in NW Taiwan. 32nd IGC Florence 2004-Scientific Sessions: Abstracts(Part2)-1391.
Tsai, L. L., 1988. Paragenetic implications of vitrinite in Chilung-Taipei coal fields. Geology, 8, Issue1-2, 63-70.
Tsai, L. L., Yang, T.-C., Lee, H.-T., and Sun, L.- C., 2005. " Characteristics of organic material and thermal maturity in a local petroleum system" , 22nd Annual Meeting of The Society for Organic Petrology. Louisville, Kentucky, pp.124-126, U.S.A. September 11-14, 2005.
Udo, O. T., Ekweozor, C. M. and Okogun, J. I., 1986. Organic petrographic and programmed pyrolysis studies of sediments from Northwestern Niger delta, Nigeria. Journ. Min. Geol., 24, 85-96.
Vassoevich, N. B., Akramkhodzhaev, A. M., Geodekyan, A. A., 1974. Principal zone of oil formation. In: Tissot, B., Bienner, F. (Eds.), Advances in Organic Geochemistry 1973. Éditions Technip, Paris, pp. 309–314.
Veld, H., Fermont, W. J. J., Jegers, L. F., 1993. Organic petrological characterization of Westphalian coals from The Netherlands : correlation between Tmax, vitrinite reflectance and hydrogen index. Organic Geochemistry, 20(6), 659-675.
Waples, D. W., 1985. Geochemistry in petroleum exploration, D. Reidel Publishing Co. Dordrecht-Boston-Lancaster. 232pp.
Wang, C. J., 1998. “Folded-fan” evaluation of coal’s hydrocarbon potential: Geochemistry, 27, Issue 5, 483-492.
Wang, C.-J., 1998. A “folded-fan” method for assessment on the hydrocarbon generating potential of coals. Geochimica, vol. 27, no. 5, 483-492.
Whelan, J. K. and Thompson-Rizer, C., 1993. Chemical methods for assessing kerogen and protokerogen types and maturity: Organic geochemistry principles and applications, in M. H. Engle and S. A. Macko, eds., New York, Plenum, 289-353.
Wu, S.-H., Weng, R.-N., Shen, J.-Q., Sun, Z.-X., Guo, Z.-L., 2003. The study for constituent characteristics of the hydrocarbon compound of coal and coal shales in the NW Taiwan. Exploration Development Research Report, vol. 25, 229-239.
Xiao, X., 1997. The organic petrological characteristics of Triassic source rocks and their hydrocarbon-generating potential in Tarim Basin: Geochimica, 26(1), 64-71.
Xiao, X. M., Hu, Z. L., Jin, Y. B., and Song, Z. G., 2005. Hydrocarbon source rocks and generation history in The Lunnan Oilfield area, northern Tarim Basin (NW China). Journal of Petroleum Geology, vol. 28(3), 319-333.
Xiao, X., 1997. The organic petrological characteristics of Triassic source rocks and their hydrocarbon-generating potential in Tarim Basin. Geochimica, vol. 26, no. 1, 64-71.
Xiao, X., Liu, D. and Fu, J., 1996. The evaluation of coal-measure source rocks of coal-bearing basins in China and their hydrocarbon-generating models: Acta Sedimentologica Sincia, vol. 14, supp., 10-17.
Zhang, T.-P., Zhang, Y.-C., and Cai, K.-Z., 2007. SPSS Statistic modeling and analytic procedure. Kings Information Co., Ltd., Taipei, 674pp.
指導教授 蔡龍珆(Louis L. Tsai) 審核日期 2009-5-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明