博碩士論文 91643004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:34.237.52.11
姓名 蔡宗哲(Tsung-Che Tsai)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 靜電激震波之電漿動力數值模擬與理論研究
(A Simulation and Theoretical Study of ion Acoustic Shocks Based on a Vlasov Simulation Code)
相關論文
★ 第23太陽週期之前半期大尺度日珥暗紋之研究★ 非週期不均勻電漿系統中靜電電漿動力數值模擬碼之設計與應用
★ 利用台灣日震觀測網的太陽影像資料研究 太陽差動自轉的變化情形★ Simulation and Theoretical Study of the Kelvin-Helmholtz Instabilityin the MHD Plasmas
★ 太陽風中旋轉不連續面及非線性艾爾文波之數值模擬研究★ 無碰撞電漿中靜電雙流不穩定之數值模擬研究
★ 透過高頻電磁波加速電子來間接加速質子的數值模擬研究★ 磁流體力學中電漿團加速與磁場重聯率變化成因之數值模擬研究
★ 利用強場電磁波產生高能質子束的數值模擬研究★ 太空電漿中跨尺度快波中速波與慢波的頻散關係之研究
★ 極端AU指數事件之研究★ 擾動層厚度對 Kelvin-Helmholtz 不穩定之成長率隨波長分佈的影響
★ 磁層與電離層耦合模式中磁層與電離層邊界條件對磁副暴發生時夜側極光弧分布之影響★ 太空電漿中之中低頻波的研究
★ 理論與數值模擬研究次磁音速的寬頻Kelvin-Helmholtz不穩定波動成長率與非線性發展過程
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在過去的研究中,科學家曾經在行星的艏震波、行星際激震波與太陽風終止激震波的電子 foreshock區域觀測到靜電波之存在。而這些靜電波可能為電子聲波、質子聲波以及double layer。然而,電子聲波為電子時間尺度之物理現象,質子聲波與double layer為質子時間尺度的物理現象,由於時間尺度之差異,使得我們必須使用跨時間尺度之模擬碼才能夠模擬此區域之物理現象。在本論文所研建的靜電Vlasov模擬碼中,使用四階implicit scheme之時間積分、三階空間微分,以及在差分加減運算時,消去小於相對誤差之溢位數值誤差(run-off error)等方式來大幅減低模擬結果之數值雜訊,如此才得以完成史上第一個能研究跨電子與質子時空尺度靜電波耦合現象之模擬碼—靜電Vlasov模擬碼。我們利用此低雜訊之靜電Vlasov模擬碼,模擬地球艏震波附近之靜電波,藉此了解那些觀測到的非線性靜電波的形成機制,以及電子靜電加熱過程。在我們的模擬結果中,我們發現當靜電激震波上游冷電漿與下游熱電漿於過渡區相遇時,將於過渡區產生一電位差,其電位差之大小與上下游電子溫度差成正比。在下游電子溫度較低的例子中,我們發現質子在過渡區邊緣產生正電荷累積,造成overshoot的現象。另一方面,當下游電子溫度夠高以致於熱電子得以穿越過渡區溢散到上游時,將先後造成電位之foot結構、電子聲波、質子聲波以及double layer等非線性靜電波。另外,我們發現電子聲波與質子聲波將快速增加電子的溫度,但無法有效的提升質子的溫度。我們認為要有效的加熱質子,需要透過大振幅之質子時空尺度的電磁波。而電子沿磁場方向被靜電波加熱所造成的溫度非均向性,將是造成中高頻電磁不穩定的原因之一。此一部分之後續研究將於論文中討論之。
摘要(英) Large amplitude electrostatic waves have been observed in the electron foreshock region of the planetary bow shocks, interplanetary shocks, and the solar wind termination shock. The observed electrostatic waves include electron acoustic waves, ion acoustic waves, and double layers. Based on the linear instability analysis, only the electron acoustic waves are expected to be found in the electron foreshock region. Since the electron acoustic waves are electron-time-scale phenomena, but the ion acoustic waves and the double layers are ion-time-scale phenomena, it is in need of a reliable cross-scale simulation code to simulate the cross-scale evolution of the nonlinear electrostatic waves in the electron foreshock region. A low-noise simulation scheme is developed in this study. This simulation scheme consists of a fourth-order implicit time integration scheme, a third-order derivative solver, and an elegant run-off error removing process. We apply this simulation scheme to the Vlasov equation and build a low-noise electrostatic Vlasov simulation code. The electrostatic shocks are studied by means of the new Vlasov simulation code. Our simulation results show a cross-scale nonlinear coupling between the ion acoustic waves and electron acoustic waves in the vicinity of the electrostatic shock. To our knowledge, this is the first simulation code that is able to simulate the nonlinear cross-scale coupling between the ion acoustic waves and electron acoustic waves. Our simulation results indicate that the cross shock potential jump is established when the hot downstream electrons meet the cold upstream electrons. The magnitude of the cross shock potential jump is found nearly proportional to the temperature difference between the downstream and the upstream electrons. It is found that, when the downstream electrons are not hot enough such that the potential jump is not high enough to slow down the upstream ions, the shock front will retreat and the incoming ions will pile up at the shock front to form a potential overshoot at the retreated shock ramp until the overshoot potential energy is comparable to the kinetic energy of the incoming ions. On the other hand, we also found that, when the downstream electrons are hot enough such that the hot downstream electrons can leak across the shock ramp, the leakage electrons can lead to formations of potential foot structure, electron acoustic waves, ion acoustic waves, and double layers in the upstream shock transition regions. Both ion acoustic waves and electron acoustic waves can lead to electron heating in the electrostatic shocks. Since little ion heating can be found in our electrostatic shock simulation, we believe that ion heating in the shock should be done primarily by the ion-time-scale electromagnetic waves. Possible electromagnetic instability induced by the field-aligned electron heating process is discussed in this thesis.
關鍵字(中) ★ 正離子聲波
★ 電子聲波
★ 靜電波
★ 電漿模擬
★ 激震波
關鍵字(英) ★ electron acoustic wave
★ ion acoustic wave
★ double layer
★ ion acoustic shock
★ electrostatic shock
★ Vlasov simulation
論文目次 中文摘要 i
英文摘要 ii
致謝辭 iv
本文目錄 v
圖目錄 vii
表目錄 xiii
第一章 導論 1
第二章 模擬碼之基本架構 6
2.1 模擬碼之基本方程式 6
2.2 模擬碼所使用之歸一化常數 7
2.3 模擬碼之數值流程 9
2.3.1 預測—修正法 9
2.3.2 三次曲線擬合法 10
2.3.3 邊界條件 11
2.4 模擬碼之測試與線性分析之方法 11
2.4.1 雙流不穩定之初始條件 13
2.4.2 線性分析之方法 14
2.4.2.1 雙流不穩定之流體線性頻散關係 15
2.4.2.2 雙流不穩定之動力學線性頻散關係 19
2.4.3 隨機雜訊低通濾波之建構方式 23
2.4.4 Vlasov模擬碼與全粒子碼模擬結果之比較 28
2.5 Vlasov模擬碼與全粒子碼執行速度之比較較 33
第三章 靜電激震波之模擬結果 35
3.1 靜電激震波之初始條件 35
3.1.1 靜電激震波的躍遷條件 35
3.1.2 模擬碼初始條件之設定 38
3.2 電位差 43
3.2.1 過渡區電位差之模擬結果 43
3.2.2 電位差之理論解與模擬結果之比較 50
3.3 電子時間尺度模擬結果之分析 55
3.3.1 下游電子聲波之理論分析 58
3.3.2 上游電子聲波之理論分析 69
3.4 正離子時間尺度模擬結果之分析 79
3.4.1 上游正離子聲波與foot結構之分析 79
3.4.2 Overshoot之分析 86
3.4.3 正離子聲波觸發電子聲波之過程 92
3.4.4 Double layer 98
第四章 總結與討論 106
參考文獻 110
附錄A Predictor-Corrector method 116
附錄B Cubic spline method 118
參考文獻 Bale, S. D., A. Hull, D. E. Larson, R. P. Lin, L. Muschietti, P. J. Kellogg, K. Goetz, and S. J. Monson, Electrostatic turbulence and Debye-scale structures associated with electron thermalization at collisionless shocks, Astrophys. J., 575, L25– L28, 2002.
Bashforth, F. and J. C. Adams, Theories of Capillary Action., Cambridge University Press, London,1883.
Bostro ̈m, R., G. Gustafsson, B. Holback, G. Holmgren, H. Koskinen, and P. Kintner, Characteristics of solitary waves and weak double layers in the magnetospheric plasma, Phys. Rev. Lett., 61, 82–85, 1988.
Cairns, I. H., and D. A. Gurnett, Outer heliospheric radio emissions: 1. Constraints on emission processes and the source region, J. Geophys. Res., 97, 6235, 1992.
Cheng, C. Z., and Knorr, G., The integration of the Vlasov equation in configuration space, J. Comput. Phys., 22, 330-351, 1976.
Cooley, J. W., and J. W. Tukey, An algorithm for the machine calculation of complex Fourier series, Mathematics of Computation, Vol. 19, No. 90, 297-301, 1965.
Dawson, J. M., H. Okuda, and B. Rosen, The electrostatic sheet model for a plasma and its modification to finite-size particles, in Methods in Computational Physics, Vol. 16, pp. 281-325, edited by A. Alder, S. Fernbach, and M. Rotenberg, Academic Press, New York, 1976.
Dawson, J. M., Particle simulation of plasmas, Rev. Mod. Phys., Vol. 55, No. 2, 403-447, 1983.
Dubouloz, N., R. Pottelette, M. Malingre, and R. A. Treumann, Generation of broadband electrostatic noise by electron acoustic solitons, Geophys. Res. Lett., 18, 155–158., 1991.
Ergun, R. E., Carlson, C. W., McFadden, J. P., Mozer, F. S., Delory, G. T., Peria, W., Chaston, C. C., Temerin, M., Roth, I., Muschietti, L., Elphic, R., Strangeway, R., Pfaff, R., Cattell, C. A., Klumpar, D., Shelley, E., Peterson, W., Moebius, E., Kistler, L., FAST satellite observations of large-amplitude solitary structures, Geophys. Res. Lett., 25, 2041– 2044, 1998.
Feldman, W. C., S. J. Bame, S. P. Gary, J. T. Gosling, D. J. McComas, and M. F. Thomsen, Electron heating within the Earth's bow shock, Phys. Rev. Lett., 49, 199- 201, 1982.
Franz, J. R., P. M. Kintner, and J. S. Pickett, POLAR observations of coherent electric field structures, Geophys. Res. Lett., 25, 1277–1280, 1998.
Grard, R., C. Nairn, A. Pedersen, S. Klimov, S. Savin, A. Skalsky, and J. G. Trotignon, Plasma and waves around Mars, Planet. Space Sci., 39, 89, 1991.
Gurnett, D. A., W. S. Kurth, R. L. Poynter, L. J. Granroth, I. H. Cairns, W. M. Macek, S. L. Moses, F. V. Coroniti, C. F. Kennel, and D. D. Barbosa, First plasma wave observations at Neptune, Science, 246, 1494, 1989.
Gurnett, D. A. and W. S. Kurth, Intense plasma waves at and near the solar wind termination shock, Nature, Volume 454, Issue 7200, 78-80, 2008.
Hershkowitz, N., Double layers and electrostatic shocks, J. Geophys. Res., 86, 3307-3310, 1981.
Hospodarsky, G. B., D. A. Gurnett, W. S. Kurth, M. G. Kivelson, R. G. Strangeway, and S. J. Bolton, Fine structure of Langmuir waves observed upstream of the bow shock at Venus, J. Geophys. Res., 99(A4), 13,363, 1994.
Hobara, Y., S. N. Walker, M. Balikhin, O. A. Pokhotelov, M. Gedalin, V. Krasnoselskikh, M. Hayakawa, M. Andre, M. Dunlop, H. Reme, and A. Fazakerley, Cluster observations of electrostatic solitary waves near the Earth’s bow shock, J. Geophys. Res., 113, A05211, 2008.
Hull, A. J., and J. D. Scudder, Model for the partition of temperature between electrons and ions across collisionless, fast mode shocks, J. Geophys. Res., 105, 27,323–27,341, 2000.
Hull, A. J., J. D. Scudder, R. J. Fitzenreiter, K. W. Ogilvie, J. A. Newbury, and C. T. Russell, Electron temperature and de Hoffmann–Teller potential change across the Earth’s bow shock: New results from ISEE 1, J. Geophys. Res., 105, 20,957–20,971, 2000.
Hull, A. J., D. E. Larson, M. Wilber, J. D. Scudder, F. S. Mozer, C. T. Russell, and S. D. Bale, Large-amplitude electrostatic waves associated with magnetic ramp substructure at Earth’s bow shock, Geophys. Res. Lett., 33, L15104, 2006.
Kojima, H., Y. Omura, H. Matsumoto, K. Miyaguti, and T. Mukai, Characteristics of electrostatic solitary waves observed in the plasma sheet boundary: Statistical analyses, Nonlinear Proc. Geophys., 6, 179– 186, 1999.
Kuncic Z., I. H. Cairns, and S. Knock, Analytic model for the electrostatic potential jump across collisionless shocks, with application to Earth’s bow shock, J. Geophys. Res., 107, A8, 1218, 2002.
Krall, N. A., and A. W. Trivelpiece, Principles of Plasma Physics, McGraw-Hill Book Company, New York, 1973.
Lin, J. J., and L. H. Lyu, Numerical simulation of plasma heating by nonlinear electrostatic and electromagnetic waves in a magnetized plasma with field-aligned counterstreaming ion beams, Proceedings of the First (1995) Radio Science Symposium, National Sun Yat-Sen University, August 7-8, 1995, Kaohsiung, Taiwan, R.O.C., pp. 555-558, 1995.
Lyu, L. H., and J. R. Kan, Ion dynamics in high-Mach-number quasi-parallel shocks, J. Geophys. Res., 98, 18,985, 1993.
Ma ̈lkki, A., H. Koskinen, R. Bostro ̈m, and B. Holback, On theories attempting to explain observations of solitary waves and weak double layers in the auroral magnetosphere, Phys. Scr., 39, 787–793, 1989.
Mangeney, A. , C. Salem, C. Lacombe, J. -L. Bougeret, C. Perche, R. Manning, P. J. Kellogg, K. Goetz, S. J. Monson, and J. -M. Bosqued, Wind observations of coherent electrostatic waves in the solar wind, Ann. Geophys., 17, 307– 320, 1999.
Matsumoto, H., H. Kojima, T. Miyatake, Y. Omura, M. Okada, I. Nagano, and M. Tsutsui, Electrostatic Solitary Waves (ESW) in the magnetotail: BEN wave forms observed by GEOTAIL, Geophys. Res. Lett., 21, 2915–2918, 1994.
Matsumoto, H., H. Kojima, Y. Kasaba, T. Miyake, R. R. Anderson, and T. Mukai, Plasma waves in the upstream and bow shock regions observed by geotail, Adv. Space Res., 20, 683– 693, 1997.
McFadden, J. P., C. W. Carlson, R. E. Ergun, F. S. Mozer, L. Muschietti, I. Roth, and E. Moebius, FAST observations of ion solitary waves, J. Geophys. Res., 108(A4), 8018, 2003.
Nicholson, D. R., Introduction to Plasma Theory, John Wiley & Sons, New York, 1983.
Pickett, J. S., J. D. Menietti, D. A. Gurnett, B. Tsurutani, P. M. Kintner, E. Klatt, and A. Balogh, Solitary potential structures observed in the magnetosheath by the Cluster spacecraft, Nonlinear Proc. Geophys., 10, 3–11, 2003.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, 1992.
Richtmyer, R. D., and K. W. Morton, Difference Methods for Initial-Value Problems, second edition, John Wiley & Sons, New York, 1967.
Sagdeev, R. Z., The 1976 Oppenheimer lectures: Critical problems in plasma astrophysics. II. Singular layers and reconnection, Rev. Mod. Phys., Vol 51, No. 1, 11-20, January 1979.
Schwartz, S. J., M. F. Thomsen, S. J. Bame, and J. Stansberry, Electron heating and the potential jump across fast mode shocks, J. Geophys. Res., 93(A11), 12,923–12,931, 1988.
Scudder, J. D., Evidence for an equation of state for electrons within collisionless shocks, Eos Trans. AGU, 69, 456, 1988.
Shampine L. F., and M. K. Gordon, Computer Solution of Ordinary Differential Equations: The Initial Value Problem, H. H. Freeman and Company, San Francisco, 1974.
Shin K., H. Kojima, H. Matsumoto, and T. Mukai, Characteristics of electrostatic solitary waves in the Earth’s foreshock region: Geotail observations, J. Geophys. Res., 113, A03101, 2008.
Temerin, M., K. Cerny, W. Lotko, and F. S. Mozer, Observations of double layers and solitary waves in the auroral plasma, Phys. Rev. Lett., 48, 1175–1179, 1982.
Thomsen, M. F., M. M. Mellott, J. A. Stansberry, S. J. Bame, J. T. Gosling, and C. T. Russell, Strong electron heating at the Earth’s bow shock, J. Geophys. Res., 92, 10,119–10,124, 1987.
Trotignon, J. G., M. Hamelin, R. Grard, A. Pedersen, S. Klimov, S. Savin, A. Skalsky, and C. F. Kennel, A comparison between the Earth’s and Mars’ bow shocks detected by the PHOBOS plasma-wave system, Planet. Space Sci., 39, 99, 1991.
Tsai, T. C., Development and Application of an Electrostatic Numerical Simulation Code for Studying Plasma Kinetic Process in Non-periodic and Non-uniform Plasmas, M.S. thesis, National Central University, Chung-li, Taiwan, R.O.C., 2001.
Tsai, T. C., L. H. Lyu, J. K. Chao, M. Q. Chen, and W. H. Tsai, A theoretical and simulation study of the contact discontinuities based on a Vlasov simulation code, J. Geophys. Res., 114, A12103, 2009.
Wilson, L. B., C. Cattell, P. J. Kellogg, K. Goetz, K. Kersten, L. Hanson, and R. MacGregor, Waves in interplanetary shocks: a Wind/WAVES study, Phys. Rev. Lett., 99, 041101, 2007.
Wu, B. H., J. K. Chao, W. H. Tsai, Y. Lin, and L. C. Lee, A hybrid simulation of contact discontinuity, Geophys. Res. Lett., 21, 2059, 1994.
指導教授 呂凌霄(Ling-Hsiao Lyu) 審核日期 2010-1-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明