博碩士論文 92221004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:18.210.22.132
姓名 洪炳煌(Bing-Huang Hong)  查詢紙本館藏   畢業系所 數學系
論文名稱 可分解友矩陣之數值域
(Numerical Ranges of Reducible Companion Matrices)
相關論文
★ 橢圓形數值域之四階方陣★ 數值域邊界上之線段
★ 正規壓縮算子與正規延拓算子★ 加權排列矩陣及加權位移矩陣之數值域
★ 可分解友矩陣之研究★ 關於巴氏空間上連續函數的近乎收斂性
★ 三角不等式與Jensen不等式之精化★ 缺陷指數為1的矩陣之研究
★ A-Statistical Convergence of Korovkin Type Approximation★ I-Convergence of Korovkin Type Approximation Theorems for Unbounded Functions
★ 四階方陣的高秩數值域★ 位移算子其有限維壓縮算子的反矩陣
★ 2×2方塊矩陣的數值域★ 加權位移矩陣的探討與廣義三角不等式的優化
★ 喬登方塊和矩陣的張量積之數值域半徑★ 3×3矩陣乘積之數值域及數值域半徑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文中,我們首先學習一些關於友矩陣數值域的基本性質。參考文獻1特別探討可分解的友矩陣,同時還證明一個友矩陣的數值域是以原點為圓心的圓盤,其充分必要條件在於這個友矩陣是Jordan區塊。而我們在此僅針對那些數值域為橢圓形的可分解友矩陣作討論,並試圖給這些矩陣一個完整的特徵。
從論文第三節可以看出所有的4 × 4可分解友矩陣將完全被解決,原因是我們會證明一個4 × 4可分解友矩陣的數值域是橢圓,若且為若,這個矩陣的光譜為{a,-a,i/a,-i/a},其中|a|≧sqrt(1+sqrt(2));或者這個矩陣的光譜為{a,ai,-1/a,-i/a},其中|a|≧1+sqrt(2)。最後,我們在論文的第四節就把討論的對象擴大為6 × 6可分解友矩陣。
摘要(英) In this thesis, we study some properties of numerical ranges of companion matrices. Previous works [1] in this respect are the criterion for these matrices to be reducible and show that the numerical range of a companion matrix is a circular disc centered at the origin if and only if the matrix equals the Jordan block. Here we want to give a complete characterization for reducible companion matrices with elliptical numerical range.
In Section 3, 4 × 4 reducible companion matrices will be completely solved. We show that a 4 × 4 reducible companion matrix A has an ellipse as its numerical range if and only if either σ(A)={a,-a,i/a,-i/a} where |a|≧sqrt(1+sqrt(2)), or σ(A)={a,ai,-1/a,-i/a} where |a|≧1+sqrt(2). Here σ(A) denotes the spectrum of the matrix A. In Section 4, we discuss the cases for 6 × 6 reducible companion matrices.
關鍵字(中) ★ 可分解的
★ 友矩陣
★ 數值域
關鍵字(英) ★ Companion Matrix
★ Reducible
★ Numerical Range
論文目次 1. Introduction..................................................1
2. Preliminaries.................................................3
2.1 Basic Properties of Numerical Ranges.....................3
2.2 Reducible Companion Matrices.............................6
3. 4 × 4 Reducible Companion Matrices............................9
4. 6 × 6 Reducible Companion Matrices...........................16
‧References...................................................20
參考文獻 [1] Hwa–Long Gau and Pei Yuan Wu, Companion matrices: reducibility, numerical ranges and similarity to contractions, Linear Algebra Appl., 383 (2004), 127–142.
[2] U.Haagerup, P. de la Harpe, The numerical radius of a nilpotent operator on a Hilbert space, Proc. Amer. Math. Soc. 115 (1992) 371–379.
[3] R. A. Horn and C. R. Johnson. Matrix analysis, Cambridge University Press, Cambridge, 1985.
[4] R. A. Horn and C. R. Johnson. Topics in matrix analysis, Cambridge University Press, Cambridge, 1991.
[5] D. S. Keeler, L. Rodman and I. M. Spitkovsky, The numerical range of 3 × 3 matrices, Linear Algebra Appl., 252 (1997), 115–139.
指導教授 高華隆(Hwa–Long Gau) 審核日期 2006-1-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明