博碩士論文 92221009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:35.173.234.140
姓名 鄭振成(Chen-Cheng Cheng)  查詢紙本館藏   畢業系所 數學系
論文名稱 以鑑別分析測量分布間之接近度
(Measure the Closeness of Density Functions by Discriminant Analysis)
相關論文
★ 定點離散核估計★ 密度函數核估計之差的極限分布及其應用
★ 密度函數的直接核估計與間接核估計★ 前二階樣本動差之函數在m相關平穩過程上之統計推論
★ 平穩過程高階動差之極限分佈及應用★ 統計模型參數和之估計
★ 隨機過程參數和之估計★ 二組件組合產品之故障率的非母數估計
★ 穩定性密度函數之核估計★ 柏努力條件下常態分布之參數估計
★ (X,Y)及max{X,Y}之分布及特徵函數之估計★ 二維品質度量之直接與間接參數估計
★ 布朗運動之雙曲正弦與雙曲餘弦變換★ 布朗運動及布阿松過程之變異數分析
★ 布朗運動之線性和二次動向函數的同值檢定★ 兩個獨立的基本Lévy隨機過程之極值過程
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文討論雙指數分布 ,柯西分布 , 分布(其中 表自由度為4之 分布)和常態分布 之間的接近程度,我們以鑑別分析作為判斷的標準,基本概念如下:較接近常態分布之分布在作常態性鑑別分析時鑑別正確率應較接近常態分布之鑑別正確率。較接近雙指數分布之分布在作雙指數性鑑別分析時鑑別正確率應較接近雙指數分布之鑑別正確率。較接近柯西分布之分布在作柯西性鑑別分析時鑑別正確率應較接近柯西分布之鑑別正確率。我們將用計算機模擬方式比較鑑別正確率,藉以判斷分布間之接近程度。
摘要(英) In this paper , we discuss the closeness of two density functions by discriminant analysis . The idea is as follows . Consider the discriminant analysis based on f , for those g that are close to f , the error rate of discriminantions for g will be close to error rate of discriminantions for f . We will make comparisons between transformed Normal , Double Exponential , Cauchy and t distributions by simulations .
關鍵字(中) ★ 鑑別分析 關鍵字(英) ★ Discriminant Analysis
論文目次 第一節 簡介......................................................................1
第二節 數據之模擬法.....................................................2
第三節 常態概似函數比之鑑別力分析.......................4
第四節 雙指數概似函數比之鑑別力分析...................6
第五節 柯西概似函數比之鑑別力分析.......................8
第六節 結論....................................................................10
參考文獻.............................................................................11
附錄一.................................................................................12
附錄1.1.....................................................................................12
附錄1.2.....................................................................................24
附錄二.................................................................................36
附錄2.1.....................................................................................36
附錄2.2.....................................................................................40
附錄三.................................................................................44
附錄3.1.....................................................................................44
附錄3.2.....................................................................................47
附錄四.................................................................................50
附錄4.1.....................................................................................50
附錄4.2.....................................................................................54
附錄五.................................................................................58
附錄5.1.....................................................................................58
附錄5.2.....................................................................................59
附錄六.................................................................................60
附錄6.1.....................................................................................60
附錄6.2.....................................................................................72
附錄七.................................................................................84
附錄7.1.....................................................................................84
附錄7.2.....................................................................................88
附錄八.................................................................................92
附錄8.1.....................................................................................92
附錄8.2.....................................................................................95
附錄九.................................................................................98
附錄9.1.....................................................................................98
附錄9.2...................................................................................102
附錄十...............................................................................106
附錄10.1.................................................................................106
附錄10.2.................................................................................107
附錄十一...........................................................................108
附錄11.1.................................................................................108
附錄11.2.................................................................................120
附錄十二...........................................................................132
附錄12.1.................................................................................132
附錄12.2.................................................................................136
附錄十三...........................................................................140
附錄13.1.................................................................................140
附錄13.2.................................................................................143
參考文獻 [1]范雲雁(2006).以密度函數差及其平方之積分測量分布間之接近度.中央大學碩士論文初稿.
[2]王楚元(2006).以適合度檢定測量分布間之接近度.中央大學碩士論文初稿.
[3]Hogg,R.V. and Craig,A.T.(1995).Introduction to Mathematical Statistics. 5th ed. Prentice Hall.
指導教授 許玉生(Yu-Sheng Hsu) 審核日期 2007-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明