博碩士論文 92221014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:35.173.234.237
姓名 黃寒楨(Han-Jhen Huang)  查詢紙本館藏   畢業系所 數學系
論文名稱 單一非線性平衡律黎曼問題廣義解的存在性
(Generalized Solution of the Riemann Problem for Some Scalar Balance Law with Singular Source Term)
相關論文
★ 氣流的非黏性駐波通過不連續管子之探究★ An Iteration Method for the Riemann Problem of Some Degenerate Hyperbolic Balance Laws
★ 影像模糊方法在蝴蝶辨識神經網路中之應用★ 非線性二階常微方程組兩點邊界值問題之解的存在性與唯一性
★ 對接近音速流量可壓縮尤拉方程式的柯西問題去架構區間逼近解★ 一些退化擬線性波動方程的解的性質.
★ 擬線性波方程中片段線性初始值問題的整體Lipchitz連續解的★ 水文地質學的平衡模型之擴散對流反應方程
★ 非線性守恆律的擾動Riemann 問題的古典解★ BBM與KdV方程初始邊界問題解的週期性
★ 共振守恆律的擾動黎曼問題的古典解★ 可壓縮流中微黏性尤拉方程激波解的行為
★ 非齊次雙曲守恆律系統初始邊界值問題之整域弱解的存在性★ 有關非線性平衡定律之柯西問題的廣域弱解
★ 單一雙曲守恆律的柯西問題熵解整體存在性的一些引理★ 二階非線性守恆律的整體經典解
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 這篇論文主要在研究單一非線性平衡律黎曼問題廣義解的存在性。而這個方程式有別於一般的平衡律,方程式有加上來源項(source term),而這來源項是奇異函數(singular function),來源項的型式為delta函數和不連續函數的乘積,所以在分佈(distribution)下是沒有定義的。
我們先把這來源項的delta 函數光滑化,使整個來源項在分佈(distribution)下有定義,進而造出擾動黎曼問題(perturbed Riemann problem)的廣義解,我們稱這廣義解為 perturbed Riemann solutions 。 而且,perturbed Riemann solutions 取極值時( 趨近於零時),就能逼近黎曼問題廣義解的自相似性(self-similarity),同時,這個結果也能讓我們用Lax的方法去探討非線性平衡律。
摘要(英) We study the existence of generalized solutions to the Riemann
problem for some scalar nonlinear balance law. The source term of equation is singular in the sense
of a product of delta function and discontinuous function (so that it is undefined in distribution).
We construct the generalized solutions based on a limiting process of measurable solutions (so-called
perturbed Riemann solutions) for associated perturbed Riemann problem. The characteristic method
is applied to study the behavior of perturbed Riemann solutions. Furthermore, the self-similarity
of generalized solutions to our Riemann problem can be obtained from the limiting behavior of perturbed Riemann
solutions, and this enables us to apply Lax’’s method to nonlinear balance
laws.
關鍵字(中) ★ 黎曼問題 關鍵字(英) ★ nonlinear balance law
★ conservation laws
★ Riemann problem
論文目次 Contents
1. Introduction ………………………………………1
2. The Characteristic Method for Perturbed Riemann Problem …………………………….……………..4
3. Solution of Perturbed Riemann Problem ………..12
4. References………………………………………..21
參考文獻 {1}
C. Dafermos, Generalized characteristics and the structure of
solutions of hyperbolic conservation laws, Ind. Univ. Math. J. { f 26} (1977), 1097-1119.
{2}
G. Dal Maso, P. LeFloch and F. Murat, Definition and weak
stability of nonconservative products, J. Math. Pure. Appl., { f
74}(1995), 483-548.
{3}
J. Glimm, Solutions in the large for nonlinear hyperbolic systems
of equations, Comm. Pure Appl. Math., { f
18}(1956), 697-715.
{4}
J. M. Hong, An extension of Glimm's method to inhomogeneous
strictly hyperbolic systems of conservation laws by "weaker than
weaker" solutions of the Riemann problem, J. Diff. Equations,
(2005), to appear.
{5}
E. Isaacson, B. Temple, Convergence of $2 imes 2$ by Godunov
method for a general resonant nonlinear balance law, SIAM J. Appl.
Math. 55 (1995), pp 625-640.
{6}
S. Kruzkov, First order quasilinear equations with several space
variables, Math. USSR Sbornik { f 10} (1970), 217-273.
{7}
P. D. Lax, Hyperbolic system of conservation laws, II, Comm. Pure
Appl. Math., { f 10}(1957), 537-566.
{8}
T. P. Liu, The Riemann problem for general systems of conservation
laws, J. Diff. Equations, { f 18}(1975), 218-234.
{9}
T. P. Liu, Quaslinear hyperbolic systems, Comm. Math. Phys., { f
68}(1979), 141-172.
{10}
C. Mascia and C. Sinestrari, The perturbed Riemann problem for a balance
law, Advances in Differential Equations, 1996-041.
{11}
O. A. Oleinik, Discontinuous solutions of nonlinear differential equations,
Amer. Math. Soc. Transl. Ser. 2, { f 26} (1957), 95-172.
{12}
C. Sinestrari, The Riemann problem for an inhomogeneous
conservation law without convexity, Siam J. Math. Anal., Vo28,
No1, (1997), 109-135.
{13}
C. Sinestrari, Asymptotic profile of solutions of conservation
laws with source, J. Diff. and Integral Equations, Vo9, No3,(1996), 499-525.
{14}
J. Smoller, Shock waves and reaction-dffusion equations, Springer,
New York, 1983.
{15}
A. Volpert, The space BV and quasilinear equations, Maths. USSR
Sbornik { f 2} (1967), 225-267.
指導教授 洪盟凱(J.M. Hong) 審核日期 2006-3-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明